These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 39226211)
1. Pore Engineering as a General Strategy to Improve Protein-Based Enzyme Nanoreactor Performance. Kwon S; Andreas MP; Giessen TW ACS Nano; 2024 Sep; 18(37):25740-25753. PubMed ID: 39226211 [TBL] [Abstract][Full Text] [Related]
2. Pore engineering as a general strategy to improve protein-based enzyme nanoreactor performance. Kwon S; Andreas MP; Giessen TW bioRxiv; 2024 May; ():. PubMed ID: 38746127 [TBL] [Abstract][Full Text] [Related]
3. Engineered Protein Nanocages for Concurrent RNA and Protein Packaging In Vivo. Kwon S; Giessen TW ACS Synth Biol; 2022 Oct; 11(10):3504-3515. PubMed ID: 36170610 [TBL] [Abstract][Full Text] [Related]
4. Nanoreactor Design Based on Self-Assembling Protein Nanocages. Ren H; Zhu S; Zheng G Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30704048 [TBL] [Abstract][Full Text] [Related]
5. Influence of Electrostatics on Small Molecule Flux through a Protein Nanoreactor. Glasgow JE; Asensio MA; Jakobson CM; Francis MB; Tullman-Ercek D ACS Synth Biol; 2015 Sep; 4(9):1011-9. PubMed ID: 25893987 [TBL] [Abstract][Full Text] [Related]
6. Pore dynamics and asymmetric cargo loading in an encapsulin nanocompartment. Ross J; McIver Z; Lambert T; Piergentili C; Bird JE; Gallagher KJ; Cruickshank FL; James P; Zarazúa-Arvizu E; Horsfall LE; Waldron KJ; Wilson MD; Mackay CL; Baslé A; Clarke DJ; Marles-Wright J Sci Adv; 2022 Jan; 8(4):eabj4461. PubMed ID: 35080974 [TBL] [Abstract][Full Text] [Related]
7. Therapeutic nanoreactors for detoxification of xenobiotics: Concepts, challenges and biotechnological trends with special emphasis to organophosphate bioscavenging. Pashirova TN; Bogdanov A; Masson P Chem Biol Interact; 2021 Sep; 346():109577. PubMed ID: 34274336 [TBL] [Abstract][Full Text] [Related]
8. Bioengineering a Light-Responsive Encapsulin Nanoreactor: A Potential Tool for Diaz D; Vidal X; Sunna A; Care A ACS Appl Mater Interfaces; 2021 Feb; 13(7):7977-7986. PubMed ID: 33586952 [TBL] [Abstract][Full Text] [Related]
9. Structural basis for peroxidase encapsulation in a protein nanocompartment. Jones JA; Andreas MP; Giessen TW bioRxiv; 2023 Sep; ():. PubMed ID: 37790520 [TBL] [Abstract][Full Text] [Related]
10. Exploring the Extreme Acid Tolerance of a Dynamic Protein Nanocage. Jones JA; Andreas MP; Giessen TW Biomacromolecules; 2023 Mar; 24(3):1388-1399. PubMed ID: 36796007 [TBL] [Abstract][Full Text] [Related]
11. Structure of a robust bacterial protein cage and its application as a versatile biocatalytic platform through enzyme encapsulation. Lončar N; Rozeboom HJ; Franken LE; Stuart MCA; Fraaije MW Biochem Biophys Res Commun; 2020 Aug; 529(3):548-553. PubMed ID: 32736672 [TBL] [Abstract][Full Text] [Related]
12. Structure and heterogeneity of a highly cargo-loaded encapsulin shell. Kwon S; Andreas MP; Giessen TW J Struct Biol; 2023 Dec; 215(4):108022. PubMed ID: 37657675 [TBL] [Abstract][Full Text] [Related]
13. A Catalytic Nanoreactor Based on in Vivo Encapsulation of Multiple Enzymes in an Engineered Protein Nanocompartment. Giessen TW; Silver PA Chembiochem; 2016 Oct; 17(20):1931-1935. PubMed ID: 27504846 [TBL] [Abstract][Full Text] [Related]
14. Zwitterionic Polyelectrolyte Complex Vesicles Assembled from Homopoly(2-Oxazoline)s as Enzyme Catalytic Nanoreactors for Potent Anti-Tumor Efficiency. Wang H; Zhang G; Lin M; Hartinger CG; Sun J Langmuir; 2024 Sep; 40(37):19423-19429. PubMed ID: 39083025 [TBL] [Abstract][Full Text] [Related]
15. Advances in encapsulin nanocompartment biology and engineering. Jones JA; Giessen TW Biotechnol Bioeng; 2021 Jan; 118(1):491-505. PubMed ID: 32918485 [TBL] [Abstract][Full Text] [Related]
16. Encapsulation of Transketolase into Van de Steen A; Wilkinson HC; Dalby PA; Frank S ACS Appl Bio Mater; 2024 Jun; 7(6):3660-3674. PubMed ID: 38835217 [TBL] [Abstract][Full Text] [Related]
17. Encapsulin Nanocontainers as Versatile Scaffolds for the Development of Artificial Metabolons. Jenkins MC; Lutz S ACS Synth Biol; 2021 Apr; 10(4):857-869. PubMed ID: 33769792 [TBL] [Abstract][Full Text] [Related]
18. Structural Characterization of Native and Modified Encapsulins as Nanoplatforms for in Vitro Catalysis and Cellular Uptake. Putri RM; Allende-Ballestero C; Luque D; Klem R; Rousou KA; Liu A; Traulsen CH; Rurup WF; Koay MST; Castón JR; Cornelissen JJLM ACS Nano; 2017 Dec; 11(12):12796-12804. PubMed ID: 29166561 [TBL] [Abstract][Full Text] [Related]
19. Nanotechnological Applications Based on Bacterial Encapsulins. Rodríguez JM; Allende-Ballestero C; Cornelissen JJLM; Castón JR Nanomaterials (Basel); 2021 Jun; 11(6):. PubMed ID: 34206092 [TBL] [Abstract][Full Text] [Related]
20. Structure and heterogeneity of a highly cargo-loaded encapsulin shell. Kwon S; Andreas MP; Giessen TW bioRxiv; 2023 Jul; ():. PubMed ID: 37546724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]