These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 39226348)
1. Single-cell analysis via manifold fitting: A framework for RNA clustering and beyond. Yao Z; Li B; Lu Y; Yau ST Proc Natl Acad Sci U S A; 2024 Sep; 121(37):e2400002121. PubMed ID: 39226348 [TBL] [Abstract][Full Text] [Related]
2. Self-supervised deep clustering of single-cell RNA-seq data to hierarchically detect rare cell populations. Lei T; Chen R; Zhang S; Chen Y Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37769630 [TBL] [Abstract][Full Text] [Related]
3. Collaborative Structure-Preserved Missing Data Imputation for Single-Cell RNA-Seq Clustering. Gao H; Shen W; Li R; Liu C; Wu S IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1480-1491. PubMed ID: 38776196 [TBL] [Abstract][Full Text] [Related]
4. Clustering scRNA-seq data with the cross-view collaborative information fusion strategy. Lou Z; Wei X; Hu Y; Hu S; Wu Y; Tian Z Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39402696 [TBL] [Abstract][Full Text] [Related]
5. ARGLRR: A Sparse Low-Rank Representation Single-Cell RNA-Sequencing Data Clustering Method Combined with a New Graph Regularization. Wang ZC; Liu JX; Shang JL; Dai LY; Zheng CH; Wang J J Comput Biol; 2023 Aug; 30(8):848-860. PubMed ID: 37471220 [TBL] [Abstract][Full Text] [Related]
6. scDFN: enhancing single-cell RNA-seq clustering with deep fusion networks. Liu T; Jia C; Bi Y; Guo X; Zou Q; Li F Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39373051 [TBL] [Abstract][Full Text] [Related]
7. A hybrid deep clustering approach for robust cell type profiling using single-cell RNA-seq data. Srinivasan S; Leshchyk A; Johnson NT; Korkin D RNA; 2020 Oct; 26(10):1303-1319. PubMed ID: 32532794 [TBL] [Abstract][Full Text] [Related]
8. Multi-View Clustering With Graph Learning for scRNA-Seq Data. Wu W; Zhang W; Hou W; Ma X IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(6):3535-3546. PubMed ID: 37486829 [TBL] [Abstract][Full Text] [Related]
9. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering. Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596 [TBL] [Abstract][Full Text] [Related]
10. scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering. Zhang T; Ren J; Li L; Wu Z; Zhang Z; Dong G; Wang G Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892162 [TBL] [Abstract][Full Text] [Related]
11. DCRELM: dual correlation reduction network-based extreme learning machine for single-cell RNA-seq data clustering. Gao Q; Ai Q Sci Rep; 2024 Jun; 14(1):13541. PubMed ID: 38866896 [TBL] [Abstract][Full Text] [Related]
12. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data. Wang H; Ma X Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164 [TBL] [Abstract][Full Text] [Related]
13. scNAME: neighborhood contrastive clustering with ancillary mask estimation for scRNA-seq data. Wan H; Chen L; Deng M Bioinformatics; 2022 Mar; 38(6):1575-1583. PubMed ID: 34999761 [TBL] [Abstract][Full Text] [Related]
14. Clustering single-cell RNA sequencing data via iterative smoothing and self-supervised discriminative embedding. Xie J; Ruan S; Tu M; Yuan Z; Hu J; Li H; Li S Oncogene; 2024 Jul; 43(29):2279-2292. PubMed ID: 38834657 [TBL] [Abstract][Full Text] [Related]
15. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network. Gan Y; Huang X; Zou G; Zhou S; Guan J Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334 [TBL] [Abstract][Full Text] [Related]
16. scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network. Wang J; Xia J; Wang H; Su Y; Zheng CH Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36631401 [TBL] [Abstract][Full Text] [Related]
17. A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa. Zhang H; Lee CAA; Li Z; Garbe JR; Eide CR; Petegrosso R; Kuang R; Tolar J PLoS Comput Biol; 2018 Apr; 14(4):e1006053. PubMed ID: 29630593 [TBL] [Abstract][Full Text] [Related]
18. An active learning approach for clustering single-cell RNA-seq data. Lin X; Liu H; Wei Z; Roy SB; Gao N Lab Invest; 2022 Mar; 102(3):227-235. PubMed ID: 34244616 [TBL] [Abstract][Full Text] [Related]
19. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data. Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142 [TBL] [Abstract][Full Text] [Related]
20. Deep enhanced constraint clustering based on contrastive learning for scRNA-seq data. Gan Y; Chen Y; Xu G; Guo W; Zou G Brief Bioinform; 2023 Jul; 24(4):. PubMed ID: 37313714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]