These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 3922666)
1. Deadspace during high frequency jet ventilation: the effects of frequency, inspiratory time and entrainment. Malmkvist G; Fletcher R; Drefeldt B; Jonson B; Lührs C; Mori N Clin Physiol; 1985; 5 Suppl 3():143-6. PubMed ID: 3922666 [No Abstract] [Full Text] [Related]
2. Effects of changing inspiratory to expiratory time ratio on carbon dioxide elimination during high-frequency jet ventilation. Paloski WH; Barie PS; Mullins RJ; Newell JC Am Rev Respir Dis; 1985 Jan; 131(1):109-14. PubMed ID: 3917629 [TBL] [Abstract][Full Text] [Related]
3. Carbon dioxide clearance and deadspace during high frequency jet ventilation. Investigations in the dog. Bourgain JL; Mortimer AJ; Sykes MK Br J Anaesth; 1986 Jan; 58(1):81-91. PubMed ID: 3080014 [TBL] [Abstract][Full Text] [Related]
4. Carbon dioxide clearance during high frequency jet ventilation. Effect of deadspace in a lung model. Mortimer AJ; Bourgain JL; Uppington J; Sykes MK Br J Anaesth; 1986 Dec; 58(12):1404-13. PubMed ID: 3098268 [TBL] [Abstract][Full Text] [Related]
5. Determinants of alveolar ventilation during high-frequency transtracheal jet ventilation in dogs. Abbrecht PH; Bryant HJ; Kyle RR; el Mawan T Crit Care Med; 1986 Jun; 14(6):563-9. PubMed ID: 3086034 [TBL] [Abstract][Full Text] [Related]
6. Deadspace and the single breath test for carbon dioxide during anaesthesia and artificial ventilation. Effects of tidal volume and frequency of respiration. Fletcher R; Jonson B Br J Anaesth; 1984 Feb; 56(2):109-19. PubMed ID: 6419753 [TBL] [Abstract][Full Text] [Related]
7. Airway pressure as a measure of gas exchange during high-frequency jet ventilation. Waterson CK; Militzer HW; Quan SF; Calkins JM Crit Care Med; 1984 Sep; 12(9):742-6. PubMed ID: 6432437 [TBL] [Abstract][Full Text] [Related]
8. Alveolar deadspace during high frequency positive pressure ventilation. Influence of ventilatory pattern. Jonzon A; Rondio Z; Sedin G Br J Anaesth; 1983 Nov; 55(11):1133-8. PubMed ID: 6416283 [TBL] [Abstract][Full Text] [Related]
9. Transport of gases in high-frequency ventilation. Jaeger MJ; Kurzweg UH; Banner MJ Crit Care Med; 1984 Sep; 12(9):708-10. PubMed ID: 6467952 [TBL] [Abstract][Full Text] [Related]
10. Effect of inspiratory flow rate on the efficiency of carbon dioxide removal at tidal volumes below instrumental dead space. Hurley EH; Keszler M Arch Dis Child Fetal Neonatal Ed; 2017 Mar; 102(2):F126-F130. PubMed ID: 27515984 [TBL] [Abstract][Full Text] [Related]
11. Theoretical interactions between ventilator settings and proximal deadspace ventilation during tracheal gas insufflation. Hotchkiss JR; Crooke PS; Marini JJ Intensive Care Med; 1996 Oct; 22(10):1112-9. PubMed ID: 8923080 [TBL] [Abstract][Full Text] [Related]
12. An appropriate inspiratory flow pattern can enhance CO2 exchange, facilitating protective ventilation of healthy lungs. Sturesson LW; Malmkvist G; Allvin S; Collryd M; Bodelsson M; Jonson B Br J Anaesth; 2016 Aug; 117(2):243-9. PubMed ID: 27440637 [TBL] [Abstract][Full Text] [Related]
13. Influence of an end inspiratory pause on pulmonary ventilation, gas distribution, and lung perfusion during artificial ventilation. Lindahl S Crit Care Med; 1979 Dec; 7(12):540-6. PubMed ID: 509966 [TBL] [Abstract][Full Text] [Related]
14. Tracheal gas insufflation as a lung-protective strategy: physiologic, histologic, and biochemical markers. Oliver RE; Rozycki HJ; Greenspan JS; Wolfson MR; Shaffer TH Pediatr Crit Care Med; 2005 Jan; 6(1):64-9. PubMed ID: 15636662 [TBL] [Abstract][Full Text] [Related]
15. High frequency oscillatory ventilation using tidal volumes smaller than the anatomical dead space. Slutsky AS; Kamm RD; Drazen JM Int Anesthesiol Clin; 1983; 21(3):161-81. PubMed ID: 6413421 [No Abstract] [Full Text] [Related]
16. Effects of spontaneous breathing with BIPAP on pulmonary gas exchange in patients with ARDS. Hörmann C; Baum M; Putensen C; Kleinsasser A; Benzer H Acta Anaesthesiol Scand Suppl; 1997; 111():152-5. PubMed ID: 9420993 [No Abstract] [Full Text] [Related]
17. Measurement of changes in respiratory mechanics during partial liquid ventilation using jet pulses. Schmalisch G; Schmidt M; Proquitté H; Foitzik B; Rüdiger M; Wauer RR Crit Care Med; 2003 May; 31(5):1435-41. PubMed ID: 12771615 [TBL] [Abstract][Full Text] [Related]
18. Aspiration of airway dead space. A new method to enhance CO2 elimination. De Robertis E; Sigurdsson SE; Drefeldt B; Jonson B Am J Respir Crit Care Med; 1999 Mar; 159(3):728-32. PubMed ID: 10051243 [TBL] [Abstract][Full Text] [Related]
19. Minute ventilation to carbon dioxide production ratio is a simple and non-invasive index of ventilatory inefficiency in mechanically ventilated patients: proof of concept. López R; Caviedes I; Graf J Intensive Care Med; 2017 Oct; 43(10):1542-1543. PubMed ID: 28567572 [No Abstract] [Full Text] [Related]
20. Respiratory deadspace measurements in neonates during extracorporeal membrane oxygenation. Arnold JH; Thompson JE; Benjamin PK Crit Care Med; 1993 Dec; 21(12):1895-900. PubMed ID: 8252895 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]