These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 3922722)

  • 1. [Analysis of the guanyl-specific ribonuclease structures in fungi: determination of the amino acid sequence and prediction of the secondary ribonuclease structure in Penicillium brevicompactum].
    Shliapnikov SV; Iakovlev GI; Kulikov VA
    Dokl Akad Nauk SSSR; 1985; 281(1):226-9. PubMed ID: 3922722
    [No Abstract]   [Full Text] [Related]  

  • 2. [Amino acid sequence of guanyl-specific ribonuclease from Penicillium chrysogenum 152A].
    Shliapnikov SV; Bezborodova SI; Kulikov VA; Iakovlev GI
    Dokl Akad Nauk SSSR; 1986; 288(5):1254-8. PubMed ID: 3089749
    [No Abstract]   [Full Text] [Related]  

  • 3. Express analysis of protein amino acid sequences. Primary structure of Penicillium chrysogenum 152A guanyl-specific ribonuclease.
    Shlyapnikov SV; Bezborodova SI; Kulikov VA; Yakovlev GI
    FEBS Lett; 1986 Feb; 196(1):29-33. PubMed ID: 3080339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid sequence and S-S bonds of Penicillium brevicompactum guanyl-specific ribonuclease.
    Shlyapnikov SV; Kulikov VA; Yakovlev GI
    FEBS Lett; 1984 Nov; 177(2):246-8. PubMed ID: 6437869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Extracellular guanyl-specific ribonuclease Sa from the actinomycete Streptomyces aureofaciens. Primary structure and homology with ribonucleases from bacteria and fungi].
    Shliapnikov SV; Both V; Kulikov VA; Dement'ev AA; Zelinka J
    Bioorg Khim; 1987 Jun; 13(6):760-72. PubMed ID: 3118883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Amino acid sequence of ribonuclease Ap1 from Aspergillus pallidus].
    Shliapnikov SV; Bezborodova SI; Dement'ev AA; Kulikov VA
    Bioorg Khim; 1988 May; 14(5):589-95. PubMed ID: 3139002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid sequence determination of guanyl-specific ribonuclease Sa from Streptomyces aureofaciens.
    Shlyapnikov SV; Both V; Kulikov VA; Dementiev AA; Sevcík J; Zelinka J
    FEBS Lett; 1986 Dec; 209(2):335-9. PubMed ID: 3098582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specificity of guanylic RNases to polynucleotide substrates.
    Both V; Moiseyev GP; Sevcik J
    Biochem Biophys Res Commun; 1991 Jun; 177(2):630-5. PubMed ID: 1904722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Ribonuclease Fl1 from Fusarium lateriticum. Isolation, substrate specificity and amino acid sequence].
    Bezborodova SI; Chepurnova NK; Shliapnikov SV
    Bioorg Khim; 1988 Jul; 14(7):893-904. PubMed ID: 3142486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The primary structure of ribonuclease F1 from Fusarium moniliforme.
    Hirabayashi J; Yoshida H
    Biochem Int; 1983 Aug; 7(2):255-62. PubMed ID: 6433932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Specificity of extracellular alkaline RNAase from Penicillium chrysogenum 152A].
    Bezborodova SI; Markelova NY; Gulayeva VI
    Biokhimiia; 1975; 40(3):592-7. PubMed ID: 1110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of guanosine-free ribonuclease T1, complexed with vanadate (V), suggests conformational change upon substrate binding.
    Kostrewa D; Choe HW; Heinemann U; Saenger W
    Biochemistry; 1989 Sep; 28(19):7592-600. PubMed ID: 2514790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Modeling of the structure of a complex of ribonuclease from Bacillus intermedius 7P with guanosine-3'-phosphate].
    Pavlovskiĭ AG; Sanishvili RG
    Dokl Akad Nauk SSSR; 1988; 301(5):1254-7. PubMed ID: 3147884
    [No Abstract]   [Full Text] [Related]  

  • 14. Kinetics of tryptic hydrolysis of the arginine-valine bond in folded and unfolded ribonuclease T1.
    Pace CN; Barrett AJ
    Biochem J; 1984 Apr; 219(2):411-7. PubMed ID: 6430267
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secondary structure and temperature-induced unfolding and refolding of ribonuclease T1 in aqueous solution. A Fourier transform infrared spectroscopic study.
    Fabian H; Schultz C; Naumann D; Landt O; Hahn U; Saenger W
    J Mol Biol; 1993 Aug; 232(3):967-81. PubMed ID: 8355280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and properties of water-insoluble derivatives of ribonuclease T1.
    Lee JC
    Biochim Biophys Acta; 1971 Jun; 235(3):435-41. PubMed ID: 5006433
    [No Abstract]   [Full Text] [Related]  

  • 17. Three-dimensional structure of the ribonuclease T1 X 3'-guanylic acid complex at 2.6 A resolution.
    Sugio S; Oka K; Ohishi H; Tomita K; Saenger W
    FEBS Lett; 1985 Apr; 183(1):115-8. PubMed ID: 2984048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analysis of an RNase T1 variant with an altered guanine binding segment.
    Höschler K; Hoier H; Hubner B; Saenger W; Orth P; Hahn U
    J Mol Biol; 1999 Dec; 294(5):1231-8. PubMed ID: 10600381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional structure of the ribonuclease T1 2'-GMP complex at 1.9-A resolution.
    Arni R; Heinemann U; Tokuoka R; Saenger W
    J Biol Chem; 1988 Oct; 263(30):15358-68. PubMed ID: 2844811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modification of Glu 58, an amino acid of the active center of ribonuclease T1, to Gln and Asp.
    Nishikawa S; Morioka H; Fuchimura K; Tanaka T; Uesugi S; Ohtsuka E; Ikehara M
    Biochem Biophys Res Commun; 1986 Jul; 138(2):789-94. PubMed ID: 2874806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.