BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 3922794)

  • 1. Properties of a mutant lactose carrier of Escherichia coli with a Cys148----Ser148 substitution.
    Neuhaus JM; Soppa J; Wright JK; Riede I; Blöcker H; Frank R; Overath P
    FEBS Lett; 1985 Jun; 185(1):83-8. PubMed ID: 3922794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Site-directed mutagenesis of cysteine-148 in the lac permease of Escherichia coli: effect on transport, binding, and sulfhydryl inactivation.
    Viitanen PV; Menick DR; Sarkar HK; Trumble WR; Kaback HR
    Biochemistry; 1985 Dec; 24(26):7628-35. PubMed ID: 3912006
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Site-specific mutagenesis of cysteine 148 to serine in the lac permease of Escherichia coli.
    Sarkar HK; Menick DR; Viitanen PV; Poonian MS; Kaback HR
    J Biol Chem; 1986 Jul; 261(19):8914-8. PubMed ID: 3087982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-directed mutagenesis of cys148 in the lac carrier protein of Escherichia coli.
    Trumble WR; Viitanen PV; Sarkar HK; Poonian MS; Kaback HR
    Biochem Biophys Res Commun; 1984 Mar; 119(3):860-7. PubMed ID: 6370251
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Site-specific alteration of cysteine 176 and cysteine 234 in the lactose carrier of Escherichia coli.
    Brooker RJ; Wilson TH
    J Biol Chem; 1986 Sep; 261(25):11765-9. PubMed ID: 3528146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of transmembrane domain III in the lactose permease of Escherichia coli.
    Sahin-Tóth M; Frillingos S; Bibi E; Gonzalez A; Kaback HR
    Protein Sci; 1994 Dec; 3(12):2302-10. PubMed ID: 7756986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The lactose/H+ carrier of Escherichia coli: lac YUN mutation decreases the rate of active transport and mimics an energy-uncoupled phenotype.
    Wright JK; Seckler R
    Biochem J; 1985 Apr; 227(1):287-97. PubMed ID: 2986605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Purification of the lactose:H+ carrier of Escherichia coli and characterization of galactoside binding and transport.
    Wright JK; Overath P
    Eur J Biochem; 1984 Feb; 138(3):497-508. PubMed ID: 6363073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Does the lactose carrier of Escherichia coli function as a monomer?
    Wright JK; Weigel U; Lustig A; Bocklage H; Mieschendahl M; Müller-Hill B; Overath P
    FEBS Lett; 1983 Oct; 162(1):11-5. PubMed ID: 6352333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and sequencing of the lac Y54-41 "uncoupled" mutant of the lactose permease.
    Brooker RJ; Myster SH; Wilson TH
    J Biol Chem; 1989 May; 264(14):8135-40. PubMed ID: 2542266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation in vivo of the reactive thiol groups of the lactose permease from Escherichia coli and a mutant; exposure, reactivity and the effects of substrate binding.
    Page MG; West IC
    Biochim Biophys Acta; 1986 Jun; 858(1):67-82. PubMed ID: 3518800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional conservation in the putative substrate binding site of the sucrose permease from Escherichia coli.
    Sahin-Tóth M; Kaback HR
    Biochemistry; 2000 May; 39(20):6170-5. PubMed ID: 10821691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization and sequencing of an uncoupled lactose carrier mutant of Escherichia coli.
    Matos ME; Wilson TH
    Biochem Biophys Res Commun; 1994 Apr; 200(1):268-74. PubMed ID: 8166695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Galactoside-dependent proton transport by mutants of the Escherichia coli lactose carrier. Replacement of histidine 322 by tyrosine or phenylalanine.
    King SC; Wilson TH
    J Biol Chem; 1989 May; 264(13):7390-4. PubMed ID: 2540191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Site-directed sulfhydryl labeling of the lactose permease of Escherichia coli: N-ethylmaleimide-sensitive face of helix II.
    Venkatesan P; Liu Z; Hu Y; Kaback HR
    Biochemistry; 2000 Sep; 39(35):10649-55. PubMed ID: 10978148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteine-scanning mutagenesis of helix VI and the flanking hydrophilic domains on the lactose permease of Escherichia coli.
    Frillingos S; Kaback HR
    Biochemistry; 1996 Apr; 35(16):5333-8. PubMed ID: 8611521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-directed mutagenesis of the lacY gene of Escherichia coli.
    Viitanen PV; Sarkar HK; Menick D; Trumble WR; Padan E; McComas W; Poonian M; Kaback HR
    Ann N Y Acad Sci; 1985; 456():307-8. PubMed ID: 3911840
    [No Abstract]   [Full Text] [Related]  

  • 18. Construction of a functional lactose permease devoid of cysteine residues.
    van Iwaarden PR; Pastore JC; Konings WN; Kaback HR
    Biochemistry; 1991 Oct; 30(40):9595-600. PubMed ID: 1911745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the charge pair aspartic acid-237-lysine-358 in the lactose permease of Escherichia coli.
    Dunten RL; Sahin-Tóth M; Kaback HR
    Biochemistry; 1993 Mar; 32(12):3139-45. PubMed ID: 8457574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of enhanced melibiose transport rate catalyzed by an Escherichia coli lactose carrier mutant with leucine substituted for serine-306. The pH-dependence of melibiose efflux.
    King SC; Wilson TH
    Biochim Biophys Acta; 1990 Mar; 1022(3):373-80. PubMed ID: 2156561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.