These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 39228402)

  • 21. Role of Post-Translational Modifications of cGAS in Innate Immunity.
    Wu Y; Li S
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33105828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pathological implication of protein post-translational modifications in cancer.
    Pan S; Chen R
    Mol Aspects Med; 2022 Aug; 86():101097. PubMed ID: 35400524
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Post-translational and transcriptional dynamics - regulating  extracellular vesicle biology.
    Claridge B; Kastaniegaard K; Stensballe A; Greening DW
    Expert Rev Proteomics; 2019 Jan; 16(1):17-31. PubMed ID: 30457403
    [No Abstract]   [Full Text] [Related]  

  • 24. In Silico Identification of SOX1 Post-Translational Modifications Highlights a Shared Protein Motif.
    Ahmad A; Strohbuecker S; Scotti C; Tufarelli C; Sottile V
    Cells; 2020 Nov; 9(11):. PubMed ID: 33202879
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intricate effects of post-translational modifications in liver cancer: mechanisms to clinical applications.
    Zhang Y; Xu W; Peng C; Ren S; Zhang C
    J Transl Med; 2024 Jul; 22(1):651. PubMed ID: 38997696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Post-Translational Modifications of G Protein-Coupled Receptors Control Cellular Signaling Dynamics in Space and Time.
    Patwardhan A; Cheng N; Trejo J
    Pharmacol Rev; 2021 Jan; 73(1):120-151. PubMed ID: 33268549
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modifications in the cellular proteome and their clinical application.
    Elguero B; Gonilski Pacin D; Cárdenas Figueroa C; Fuertes M; Arzt E
    Medicina (B Aires); 2019; 79(Spec 6/1):570-575. PubMed ID: 31864228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tau Post-translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation.
    Alquezar C; Arya S; Kao AW
    Front Neurol; 2020; 11():595532. PubMed ID: 33488497
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SENP3 regulates the global protein turnover and the Sp1 level via antagonizing SUMO2/3-targeted ubiquitination and degradation.
    Wang M; Sang J; Ren Y; Liu K; Liu X; Zhang J; Wang H; Wang J; Orian A; Yang J; Yi J
    Protein Cell; 2016 Jan; 7(1):63-77. PubMed ID: 26511642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Disturbed Flow-Induced Endothelial Proatherogenic Signaling Via Regulating Post-Translational Modifications and Epigenetic Events.
    Heo KS; Berk BC; Abe J
    Antioxid Redox Signal; 2016 Sep; 25(7):435-50. PubMed ID: 26714841
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Transcription Factor Sp1 in the Expression of Genes Encoding Components of MAPK, JAK/STAT, and PI3K/Akt Signaling Pathways].
    Ivanenko KA; Prassolov VS; Khabusheva ER
    Mol Biol (Mosk); 2022; 56(5):832-847. PubMed ID: 36165020
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Post-translational modifications and their implications in cancer.
    Dutta H; Jain N
    Front Oncol; 2023; 13():1240115. PubMed ID: 37795435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Post-Translational Modification of PTEN Protein: Quantity and Activity.
    Li X; Yang P; Hou X; Ji S
    Oncol Rev; 2024; 18():1430237. PubMed ID: 39144161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unconventional posttranslational modification in innate immunity.
    Chen J; Qi D; Hu H; Wang X; Lin W
    Cell Mol Life Sci; 2024 Jul; 81(1):290. PubMed ID: 38970666
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomics of post-translational modifications in colorectal cancer: Discovery of new biomarkers.
    Zhu G; Jin L; Sun W; Wang S; Liu N
    Biochim Biophys Acta Rev Cancer; 2022 Jul; 1877(4):188735. PubMed ID: 35577141
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of transcription factor acetylation in the regulation of metabolic homeostasis.
    Park JM; Jo SH; Kim MY; Kim TH; Ahn YH
    Protein Cell; 2015 Nov; 6(11):804-13. PubMed ID: 26334401
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sp1 and the 'hallmarks of cancer'.
    Beishline K; Azizkhan-Clifford J
    FEBS J; 2015 Jan; 282(2):224-58. PubMed ID: 25393971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Post-translational control of NLRP3 inflammasome signaling.
    O'Keefe ME; Dubyak GR; Abbott DW
    J Biol Chem; 2024 Jun; 300(6):107386. PubMed ID: 38763335
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insulin dynamically regulates calmodulin gene expression by sequential o-glycosylation and phosphorylation of sp1 and its subcellular compartmentalization in liver cells.
    Majumdar G; Harrington A; Hungerford J; Martinez-Hernandez A; Gerling IC; Raghow R; Solomon S
    J Biol Chem; 2006 Feb; 281(6):3642-50. PubMed ID: 16332679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Post-translational modifications of the progesterone receptors.
    Abdel-Hafiz HA; Horwitz KB
    J Steroid Biochem Mol Biol; 2014 Mar; 140():80-9. PubMed ID: 24333793
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.