These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 39229381)
1. Optimizing evaluation of endometrial receptivity in recurrent pregnancy loss: a preliminary investigation integrating radiomics from multimodal ultrasound via machine learning. Yan S; Xiong F; Xin Y; Zhou Z; Liu W Front Endocrinol (Lausanne); 2024; 15():1380829. PubMed ID: 39229381 [TBL] [Abstract][Full Text] [Related]
2. Radiomics optimizing the evaluation of endometrial receptivity for women with unexplained recurrent pregnancy loss. Huang W; Jin Y; Jiang L; Liang M Front Endocrinol (Lausanne); 2023; 14():1181058. PubMed ID: 37795355 [TBL] [Abstract][Full Text] [Related]
3. Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis. Wang SR; Cao CL; Du TT; Wang JL; Li J; Li WX; Chen M J Ultrasound Med; 2024 Sep; 43(9):1611-1625. PubMed ID: 38808580 [TBL] [Abstract][Full Text] [Related]
4. An XGBoost Machine Learning Based Model for Predicting Ki-67 Value ≥ 15% in T Lu Y; Yang F; Tao Y; An P Technol Cancer Res Treat; 2024; 23():15330338241265989. PubMed ID: 39051517 [No Abstract] [Full Text] [Related]
5. Multimodal Ultrasound Radiomic Technology for Diagnosing Benign and Malignant Thyroid Nodules of Ti-Rads 4-5: A Multicenter Study. Wang L; Wang C; Deng X; Li Y; Zhou W; Huang Y; Chu X; Wang T; Li H; Chen Y Sensors (Basel); 2024 Sep; 24(19):. PubMed ID: 39409243 [TBL] [Abstract][Full Text] [Related]
6. [Preoperative Evaluation of Cervical Lymph Node Metastasis in Patients With Hashimoto's Thyroiditis Combined With Thyroid Papillary Carcinoma Using Machine Learning and Radiomics-Based Features: A Preliminary Study]. Fu R; Deng S; Hu Y; Luo P; Yang H; Teng H; Zeng D; Ren J Sichuan Da Xue Xue Bao Yi Xue Ban; 2024 Jul; 55(4):1026-1033. PubMed ID: 39170022 [TBL] [Abstract][Full Text] [Related]
7. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study. Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259 [TBL] [Abstract][Full Text] [Related]
8. Enhancing Ki-67 Prediction in Breast Cancer: Integrating Intratumoral and Peritumoral Radiomics From Automated Breast Ultrasound via Machine Learning. Li F; Zhu TW; Lin M; Zhang XT; Zhang YL; Zhou AL; Huang DY Acad Radiol; 2024 Jul; 31(7):2663-2673. PubMed ID: 38182442 [TBL] [Abstract][Full Text] [Related]
9. [Development of a grading diagnostic model for schistosomiasis-induced liver fibrosis based on radiomics and clinical laboratory indicators]. Guo Z; Shao J; Zou X; Zhao Q; Qian P; Wang W; Huang L; Xue J; Xu J; Yang K; Zhou X; Li S Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi; 2024 Jun; 36(3):251-258. PubMed ID: 38952311 [TBL] [Abstract][Full Text] [Related]
10. Multiparametric MRI-Based Interpretable Radiomics Machine Learning Model Differentiates Medulloblastoma and Ependymoma in Children: A Two-Center Study. Yimit Y; Yasin P; Tuersun A; Wang J; Wang X; Huang C; Abudoubari S; Chen X; Ibrahim I; Nijiati P; Wang Y; Zou X; Nijiati M Acad Radiol; 2024 Aug; 31(8):3384-3396. PubMed ID: 38508934 [TBL] [Abstract][Full Text] [Related]
11. Predicting the pathological invasiveness in patients with a solitary pulmonary nodule via Shapley additive explanations interpretation of a tree-based machine learning radiomics model: a multicenter study. Zhang R; Hong M; Cai H; Liang Y; Chen X; Liu Z; Wu M; Zhou C; Bao C; Wang H; Yang S; Hu Q Quant Imaging Med Surg; 2023 Dec; 13(12):7828-7841. PubMed ID: 38106261 [TBL] [Abstract][Full Text] [Related]
12. Application of Interpretable Machine Learning Models Based on Ultrasonic Radiomics for Predicting the Risk of Fibrosis Progression in Diabetic Patients with Nonalcoholic Fatty Liver Disease. Meng F; Wu Q; Zhang W; Hou S Diabetes Metab Syndr Obes; 2023; 16():3901-3913. PubMed ID: 38077485 [TBL] [Abstract][Full Text] [Related]
13. Develop a radiomics-based machine learning model to predict the stone-free rate post-percutaneous nephrolithotomy. Zou XC; Luo CW; Yuan RM; Jin MN; Zeng T; Chao HC Urolithiasis; 2024 Apr; 52(1):64. PubMed ID: 38613668 [TBL] [Abstract][Full Text] [Related]
14. A Clinical-radiomic Nomogram for the Non-invasive Evaluation of Glomerular Status in Diabetic Kidney Disease. Xiao W; Zhang D; Hu X; Yin C; Liu X; Wang D; Yao J; Liu X; Zhang C; Qin X Curr Med Imaging; 2024; 20():e15734056307336. PubMed ID: 38988164 [TBL] [Abstract][Full Text] [Related]
15. Machine learning model for non-alcoholic steatohepatitis diagnosis based on ultrasound radiomics. Xia F; Wei W; Wang J; Duan Y; Wang K; Zhang C BMC Med Imaging; 2024 Aug; 24(1):221. PubMed ID: 39164667 [TBL] [Abstract][Full Text] [Related]
16. Optimizing the radiomics-machine-learning model based on non-contrast enhanced CT for the simplified risk categorization of thymic epithelial tumors: A large cohort retrospective study. Feng XL; Wang SZ; Chen HH; Huang YX; Xin YK; Zhang T; Cheng DL; Mao L; Li XL; Liu CX; Hu YC; Wang W; Cui GB; Nan HY Lung Cancer; 2022 Apr; 166():150-160. PubMed ID: 35287067 [TBL] [Abstract][Full Text] [Related]
17. Leveraging multimodal MRI-based radiomics analysis with diverse machine learning models to evaluate lymphovascular invasion in clinically node-negative breast cancer. Jiang Y; Zeng Y; Zuo Z; Yang X; Liu H; Zhou Y; Fan X Heliyon; 2024 Jan; 10(1):e23916. PubMed ID: 38192872 [TBL] [Abstract][Full Text] [Related]
18. T2-weighted imaging-based radiomic-clinical machine learning model for predicting the differentiation of colorectal adenocarcinoma. Zheng HD; Huang QY; Huang QM; Ke XT; Ye K; Lin S; Xu JH World J Gastrointest Oncol; 2024 Mar; 16(3):819-832. PubMed ID: 38577440 [TBL] [Abstract][Full Text] [Related]
19. US-based radiomics analysis of different machine learning models for differentiating benign and malignant BI-RADS 4A breast lesions. Ye J; Chen Y; Pan J; Qiu Y; Luo Z; Xiong Y; He Y; Chen Y; Xie F; Huang W Acad Radiol; 2024 Aug; ():. PubMed ID: 39191562 [TBL] [Abstract][Full Text] [Related]
20. Non-Contrasted CT Radiomics for SAH Prognosis Prediction. Shan D; Wang J; Qi P; Lu J; Wang D Bioengineering (Basel); 2023 Aug; 10(8):. PubMed ID: 37627852 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]