These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 39229525)

  • 1. Image restoration model for microscopic defocused images based on blurring kernel guidance.
    Wei Y; Li Q; Hou W
    Heliyon; 2024 Aug; 10(16):e36151. PubMed ID: 39229525
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Single Image Defocus Deblurring via Gaussian Kernel Mixture Learning.
    Quan Y; Wu Z; Xu R; Ji H
    IEEE Trans Pattern Anal Mach Intell; 2024 Dec; 46(12):11361-11377. PubMed ID: 39255177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deconvolution of several versions of a scene perturbed by different defocus blurs: influence of kernel diameters on restoration quality and on robustness to kernel estimation.
    Goudail F; Ruch O; Réfrégier P
    Appl Opt; 2000 Dec; 39(35):6602-12. PubMed ID: 18354674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lung dynamic MRI deblurring using low-rank decomposition and dictionary learning.
    Gou S; Wang Y; Wu J; Lee P; Sheng K
    Med Phys; 2015 Apr; 42(4):1917-25. PubMed ID: 25832082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CT kernel conversions using convolutional neural net for super-resolution with simplified squeeze-and-excitation blocks and progressive learning among smooth and sharp kernels.
    Eun DI; Woo I; Park B; Kim N; Lee A SM; Seo JB
    Comput Methods Programs Biomed; 2020 Nov; 196():105615. PubMed ID: 32599340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lateral image reconstruction of optical coherence tomography using one-dimensional deep deconvolution network.
    Lee M; Bang H; Lee E; Won Y; Kim K; Park S; Yoo H; Lee S
    Lasers Surg Med; 2022 Aug; 54(6):895-906. PubMed ID: 35366377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An effcient motion deblurring based on FPSF and clustering.
    Huang HY; Tsai WC
    Math Biosci Eng; 2019 May; 16(5):4036-4052. PubMed ID: 31499648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Full-resolution image restoration for light field images via a spatial shift-variant degradation network.
    Zhu C; Jiang Y; Yuan Y; Su L; Yin X; Kong D
    Opt Express; 2024 Feb; 32(4):5362-5379. PubMed ID: 38439265
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computed Tomography (CT) Image Quality Enhancement via a Uniform Framework Integrating Noise Estimation and Super-Resolution Networks.
    Chi J; Zhang Y; Yu X; Wang Y; Wu C
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31366173
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kernel Estimation Using Total Variation Guided GAN for Image Super-Resolution.
    Park J; Kim H; Kang MG
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iterative reconstruction of Fourier-rebinned PET data using sinogram blurring function estimated from point source scans.
    Tohme MS; Qi J
    Med Phys; 2010 Oct; 37(10):5530-40. PubMed ID: 21089788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image restoration for synthetic aperture systems with a non-blind deconvolution algorithm via a deep convolutional neural network.
    Hui M; Wu Y; Li W; Liu M; Dong L; Kong L; Zhao Y
    Opt Express; 2020 Mar; 28(7):9929-9943. PubMed ID: 32225592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of error bounds in the recovery of depth from defocused images.
    Rajagopalan AN; Chaudhuri S; Chellappa R
    J Opt Soc Am A Opt Image Sci Vis; 2000 Oct; 17(10):1722-31. PubMed ID: 11028520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving small animal cone beam CT resolution by mitigating x-ray focal spot induced blurring via deconvolution.
    Hu X; Zhong Y; Huang Y; Shen C; Jia X
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35483338
    [No Abstract]   [Full Text] [Related]  

  • 16. Sharp-focus image restoration from defocused images.
    Simonov AN; Rombach MC
    Opt Lett; 2009 Jul; 34(14):2111-3. PubMed ID: 19823518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PILN: A posterior information learning network for blind reconstruction of lung CT images.
    Chi J; Sun Z; Han X; Yu X; Wang H; Wu C
    Comput Methods Programs Biomed; 2023 Apr; 232():107449. PubMed ID: 36871547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of quantitative, efficient image reconstruction for VersaPET, a compact PET system.
    Wei S; Vaska P
    Med Phys; 2020 Jul; 47(7):2852-2868. PubMed ID: 32219853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kernel-attentive weight modulation memory network for optical blur kernel-aware image super-resolution.
    Yun JS; Bong Yoo S
    Opt Lett; 2023 May; 48(10):2740-2743. PubMed ID: 37186754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network.
    Li Q; Li R; Li S; Wang T; Cheng Y; Zhang S; Wu W; Zhao J; Qiang Y; Wang L
    Med Phys; 2024 Feb; 51(2):1289-1312. PubMed ID: 36841936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.