These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 39229742)
1. Design and screening of bimetallic catalysts for nitric oxide reduction by CO: a study of kinetic Monte Carlo simulation based on first-principles calculations. Wang C; Li R; Guo W Phys Chem Chem Phys; 2024 Sep; 26(36):23754-23765. PubMed ID: 39229742 [TBL] [Abstract][Full Text] [Related]
2. Reaction Mechanisms, Kinetics, and Improved Catalysts for Ammonia Synthesis from Hierarchical High Throughput Catalyst Design. Fuller J; An Q; Fortunelli A; Goddard WA Acc Chem Res; 2022 Apr; 55(8):1124-1134. PubMed ID: 35387450 [TBL] [Abstract][Full Text] [Related]
3. First-principles study on the design of nickel based bimetallic catalysts for xylose to xylitol conversion. Akpe SG; Choi SH; Ham HC Phys Chem Chem Phys; 2023 Dec; 26(1):352-364. PubMed ID: 38063502 [TBL] [Abstract][Full Text] [Related]
4. Ethane Dehydrogenation over the Core-Shell Pt-Based Alloy Catalysts: Driven by Engineering the Shell Composition and Thickness. Zhang Y; Wang B; Fan M; Ling L; Zhang R ACS Appl Mater Interfaces; 2023 Mar; 15(8):10679-10695. PubMed ID: 36795766 [TBL] [Abstract][Full Text] [Related]
5. Origin of Multiple Peaks in the Potentiodynamic Oxidation of CO Adlayers on Pt and Ru-Modified Pt Electrodes. Wang H; Abruña HD J Phys Chem Lett; 2015 May; 6(10):1899-906. PubMed ID: 26263266 [TBL] [Abstract][Full Text] [Related]
6. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
7. "First-principles" kinetic Monte Carlo simulations revisited: CO oxidation over RuO2 (110). Hess F; Farkas A; Seitsonen AP; Over H J Comput Chem; 2012 Mar; 33(7):757-66. PubMed ID: 22253041 [TBL] [Abstract][Full Text] [Related]
8. Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for CO oxidation. Mu R; Fu Q; Xu H; Zhang H; Huang Y; Jiang Z; Zhang S; Tan D; Bao X J Am Chem Soc; 2011 Feb; 133(6):1978-86. PubMed ID: 21247156 [TBL] [Abstract][Full Text] [Related]
9. Towards the rational design of Pt-based alloy catalysts for the low-temperature water-gas shift reaction: from extended surfaces to single atom alloys. Yang Y; Shen T; Xu X Chem Sci; 2022 Jun; 13(21):6385-6396. PubMed ID: 35733891 [TBL] [Abstract][Full Text] [Related]
10. Screening by kinetic Monte Carlo simulation of Pt-Au(100) surfaces for the steady-state decomposition of nitric oxide in excess dioxygen. Kieken LD; Neurock M; Mei D J Phys Chem B; 2005 Feb; 109(6):2234-44. PubMed ID: 16851216 [TBL] [Abstract][Full Text] [Related]
11. Atomistic Insights into H Banisalman MJ; Lee HW; Koh H; Han SS ACS Appl Mater Interfaces; 2021 Apr; 13(15):17577-17585. PubMed ID: 33835774 [TBL] [Abstract][Full Text] [Related]
13. Theoretical Insights into the Effects of Oxidation and Mo-Doping on the Structure and Stability of Pt-Ni Nanoparticles. Cao L; Mueller T Nano Lett; 2016 Dec; 16(12):7748-7754. PubMed ID: 27797520 [TBL] [Abstract][Full Text] [Related]
14. First-principles-based kinetic Monte Carlo simulations of CO oxidation on catalytic Au(110) and Ag(110) surfaces. Fajín JLC; Moura AS; Cordeiro MNDS Phys Chem Chem Phys; 2021 Jul; 23(25):14037-14050. PubMed ID: 34151916 [TBL] [Abstract][Full Text] [Related]
15. Comprehensive Density Functional and Kinetic Monte Carlo Study of CO Lozano-Reis P; Gamallo P; Sayós R; Illas F ACS Catal; 2024 Feb; 14(4):2284-2299. PubMed ID: 38384940 [TBL] [Abstract][Full Text] [Related]
16. Bimetallic Ni-Based Catalysts for CO Tsiotsias AI; Charisiou ND; Yentekakis IV; Goula MA Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33374436 [TBL] [Abstract][Full Text] [Related]
17. A kinetic Monte Carlo study of Pt on Au(111) with applications to bimetallic catalysis. Zoontjens P; Grochola G; Snook IK; Russo SP J Phys Condens Matter; 2011 Jan; 23(1):015302. PubMed ID: 21406822 [TBL] [Abstract][Full Text] [Related]
18. Kinetic Monte Carlo Modeling for the NO-CO Reaction Mechanism on Rh(100) and Rh(111). Liu J; Tan L; Huang L; Wang Q; Liu Y Langmuir; 2020 Mar; 36(12):3127-3140. PubMed ID: 32075370 [TBL] [Abstract][Full Text] [Related]
19. Coupling of kinetic Monte Carlo simulations of surface reactions to transport in a fluid for heterogeneous catalytic reactor modeling. Schaefer C; Jansen AP J Chem Phys; 2013 Feb; 138(5):054102. PubMed ID: 23406093 [TBL] [Abstract][Full Text] [Related]
20. Achieving rational design of alloy catalysts using a descriptor based on a quantitative structure-energy equation. Ding Y; Xu Y; Mao Y; Wang Z; Hu P Chem Commun (Camb); 2020 Mar; 56(21):3214-3217. PubMed ID: 32073043 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]