These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 3922981)
1. Interaction of tetanus toxin with lipid vesicles at low pH. Protection of specific polypeptides against proteolysis. Roa M; Boquet P J Biol Chem; 1985 Jun; 260(11):6827-35. PubMed ID: 3922981 [TBL] [Abstract][Full Text] [Related]
2. Tetanus toxin fragment forms channels in lipid vesicles at low pH. Boquet P; Duflot E Proc Natl Acad Sci U S A; 1982 Dec; 79(24):7614-8. PubMed ID: 6296842 [TBL] [Abstract][Full Text] [Related]
3. Low pH induces a hydrophobic domain in the tetanus toxin molecule. Boquet P; Duflot E; Hauttecoeur B Eur J Biochem; 1984 Oct; 144(2):339-44. PubMed ID: 6489333 [TBL] [Abstract][Full Text] [Related]
4. Proteolytic fragmentation of tetanus toxin by subcellular fractions of JY, a B lymphoblastoid cell line. Reboul A; Arvieux J; Wright JF; Colomb MG Biochem J; 1991 Jul; 277 ( Pt 1)(Pt 1):47-51. PubMed ID: 1649603 [TBL] [Abstract][Full Text] [Related]
5. A candidate carrier protein for beta-human chorionic gonadotropin: 54,000-molecular-weight fragment of tetanus toxin. Covey DC; Moore DE; Chang CC; Laurence KA Am J Reprod Immunol Microbiol; 1985 Jun; 8(2):43-7. PubMed ID: 2411156 [TBL] [Abstract][Full Text] [Related]
6. Identification of a ganglioside recognition domain of tetanus toxin using a novel ganglioside photoaffinity ligand. Shapiro RE; Specht CD; Collins BE; Woods AS; Cotter RJ; Schnaar RL J Biol Chem; 1997 Nov; 272(48):30380-6. PubMed ID: 9374528 [TBL] [Abstract][Full Text] [Related]
7. Enzymatic hydrolysis of tetanus toxin by intrinsic and extrinsic proteases. Characterization of the fragments by monoclonal antibodies. Goretzki K; Habermann E Med Microbiol Immunol; 1985; 174(3):139-50. PubMed ID: 3897815 [TBL] [Abstract][Full Text] [Related]
8. Low pH-induced release of diphtheria toxin A-fragment in Vero cells. Biochemical evidence for transfer to the cytosol. Moskaug JO; Sandvig K; Olsnes S J Biol Chem; 1988 Feb; 263(5):2518-25. PubMed ID: 3339019 [TBL] [Abstract][Full Text] [Related]
9. Enzymatic fragmentation of tetanus toxin. Identification and characterization of an atoxic, immunogenic fragment. Robinson JP; Chen HC; Hash JH; Puett D Mol Cell Biochem; 1978 Oct; 21(1):23-31. PubMed ID: 104144 [TBL] [Abstract][Full Text] [Related]
10. Limited proteolysis of tetanus toxin. Relation to activity and identification of cleavage sites. Krieglstein KG; Henschen AH; Weller U; Habermann E Eur J Biochem; 1991 Nov; 202(1):41-51. PubMed ID: 1935979 [TBL] [Abstract][Full Text] [Related]
11. A simplified method for the preparation of tetanus toxin binding fragment for neurobiology. Fishman PS; Farrand DA; Halpern JL; Latham WC J Neurosci Methods; 1992 May; 42(3):229-36. PubMed ID: 1380109 [TBL] [Abstract][Full Text] [Related]
12. Structure of tetanus toxin. I. Breakdown of the toxin molecule and discrimination between polypeptide fragments. Helting TB; Zwisler O J Biol Chem; 1977 Jan; 252(1):187-93. PubMed ID: 401808 [TBL] [Abstract][Full Text] [Related]
13. Structure of tetanus toxin: the arrangement of papain digestion products within the heavy chain-light chain framework of extracellular toxin. Neubauer V; Helting TB Biochim Biophys Acta; 1981 Mar; 668(1):141-8. PubMed ID: 7016194 [TBL] [Abstract][Full Text] [Related]
14. High-level Expression of Tetanus Toxin Fragment C in Escherichia coli. Aghaiypour K; Teymourpour R Arch Razi Inst; 2018 Dec; 73(1):27-38. PubMed ID: 30256036 [TBL] [Abstract][Full Text] [Related]
15. Tetanus toxin induces fusion and aggregation of lipid vesicles containing phosphatidylinositol at low pH. Cabiaux V; Lorge P; Vandenbranden M; Falmagne P; Ruysschaert JM Biochem Biophys Res Commun; 1985 Apr; 128(2):840-9. PubMed ID: 3994725 [TBL] [Abstract][Full Text] [Related]
16. Tetanus toxin interaction with human erythrocytes. II. Kinetic properties of toxin association and evidence for a ganglioside-toxin macromolecular complex formation. Lazarovici P; Yavin E Biochim Biophys Acta; 1985 Jan; 812(2):532-42. PubMed ID: 3967025 [TBL] [Abstract][Full Text] [Related]
17. The pH-dependent conformational change of diphtheria toxin. Dumont ME; Richards FM J Biol Chem; 1988 Feb; 263(4):2087-97. PubMed ID: 3339004 [TBL] [Abstract][Full Text] [Related]
18. Characterization of neutralizing monoclonal antibodies directed against tetanus toxin fragment C. Yousefi M; Tahmasebi F; Younesi V; Razavi A; Khoshnoodi J; Bayat AA; Abbasi E; Rabbani H; Jeddi-Tehrani M; Shokri F J Immunotoxicol; 2014; 11(1):28-34. PubMed ID: 23369087 [TBL] [Abstract][Full Text] [Related]
19. Interaction between tetanus toxin and rabbit kidney: a comparison with rat brain preparations. Habermann E; Albus U J Neurochem; 1986 Apr; 46(4):1219-26. PubMed ID: 3950626 [TBL] [Abstract][Full Text] [Related]
20. Identification of a binding site for ganglioside on the receptor binding domain of tetanus toxin. Louch HA; Buczko ES; Woody MA; Venable RM; Vann WF Biochemistry; 2002 Nov; 41(46):13644-52. PubMed ID: 12427026 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]