These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 39230696)

  • 1. Multi-task deep latent spaces for cancer survival and drug sensitivity prediction.
    Rintala TJ; Napolitano F; Fortino V
    Bioinformatics; 2024 Sep; 40(Suppl 2):ii182-ii189. PubMed ID: 39230696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DeepDRK: a deep learning framework for drug repurposing through kernel-based multi-omics integration.
    Wang Y; Yang Y; Chen S; Wang J
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33822890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hi-GeoMVP: a hierarchical geometry-enhanced deep learning model for drug response prediction.
    Chen Y; Zhang L
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38614131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning with multiple pairwise kernels for drug bioactivity prediction.
    Cichonska A; Pahikkala T; Szedmak S; Julkunen H; Airola A; Heinonen M; Aittokallio T; Rousu J
    Bioinformatics; 2018 Jul; 34(13):i509-i518. PubMed ID: 29949975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TransCDR: a deep learning model for enhancing the generalizability of drug activity prediction through transfer learning and multimodal data fusion.
    Xia X; Zhu C; Zhong F; Liu L
    BMC Biol; 2024 Oct; 22(1):227. PubMed ID: 39385185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The prediction of drug sensitivity by multi-omics fusion reveals the heterogeneity of drug response in pan-cancer.
    Wang C; Zhang M; Zhao J; Li B; Xiao X; Zhang Y
    Comput Biol Med; 2023 Sep; 163():107220. PubMed ID: 37406589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Current Advances and Limitations of Deep Learning in Anticancer Drug Sensitivity Prediction.
    Tan X; Yu Y; Duan K; Zhang J; Sun P; Sun H
    Curr Top Med Chem; 2020; 20(21):1858-1867. PubMed ID: 32648840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance.
    Choi J; Park S; Ahn J
    Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of anticancer drug sensitivity using an interpretable model guided by deep learning.
    Pang W; Chen M; Qin Y
    BMC Bioinformatics; 2024 May; 25(1):182. PubMed ID: 38724920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression.
    Ammad-Ud-Din M; Khan SA; Wennerberg K; Aittokallio T
    Bioinformatics; 2017 Jul; 33(14):i359-i368. PubMed ID: 28881998
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CODEX: COunterfactual Deep learning for the in silico EXploration of cancer cell line perturbations.
    Schrod S; Zacharias HU; Beißbarth T; Hauschild AC; Altenbuchinger M
    Bioinformatics; 2024 Jun; 40(Suppl 1):i91-i99. PubMed ID: 38940173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multitask learning improves prediction of cancer drug sensitivity.
    Yuan H; Paskov I; Paskov H; González AJ; Leslie CS
    Sci Rep; 2016 Aug; 6():31619. PubMed ID: 27550087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Network-based drug sensitivity prediction.
    Ahmed KT; Park S; Jiang Q; Yeu Y; Hwang T; Zhang W
    BMC Med Genomics; 2020 Dec; 13(Suppl 11):193. PubMed ID: 33371891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. kESVR: An Ensemble Model for Drug Response Prediction in Precision Medicine Using Cancer Cell Lines Gene Expression.
    Majumdar A; Liu Y; Lu Y; Wu S; Cheng L
    Genes (Basel); 2021 May; 12(6):. PubMed ID: 34070793
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ensemble transfer learning for the prediction of anti-cancer drug response.
    Zhu Y; Brettin T; Evrard YA; Partin A; Xia F; Shukla M; Yoo H; Doroshow JH; Stevens RL
    Sci Rep; 2020 Oct; 10(1):18040. PubMed ID: 33093487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MMCL-CDR: enhancing cancer drug response prediction with multi-omics and morphology images contrastive representation learning.
    Li Y; Guo Z; Gao X; Wang G
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38070154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach.
    Emdadi A; Eslahchi C
    J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepProg: an ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data.
    Poirion OB; Jing Z; Chaudhary K; Huang S; Garmire LX
    Genome Med; 2021 Jul; 13(1):112. PubMed ID: 34261540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dual-view jointly learning improves personalized drug synergy prediction.
    Li X; Shen B; Feng F; Li K; Tang Z; Ma L; Li H
    Bioinformatics; 2024 Oct; 40(10):. PubMed ID: 39423102
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.