These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 39230708)

  • 1. CLigOpt: controllable ligand design through target-specific optimization.
    Li Y; Avelar PHDC; Chen X; Zhang L; Wu M; Tsoka S
    Bioinformatics; 2024 Sep; 40(Suppl 2):ii62-ii69. PubMed ID: 39230708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FSM-DDTR: End-to-end feedback strategy for multi-objective De Novo drug design using transformers.
    Monteiro NRC; Pereira TO; Machado ACD; Oliveira JL; Abbasi M; Arrais JP
    Comput Biol Med; 2023 Sep; 164():107285. PubMed ID: 37557054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GRELinker: A Graph-Based Generative Model for Molecular Linker Design with Reinforcement and Curriculum Learning.
    Zhang H; Huang J; Xie J; Huang W; Yang Y; Xu M; Lei J; Chen H
    J Chem Inf Model; 2024 Feb; 64(3):666-676. PubMed ID: 38241022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conditional Molecular Design with Deep Generative Models.
    Kang S; Cho K
    J Chem Inf Model; 2019 Jan; 59(1):43-52. PubMed ID: 30016587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico fragment-based drug discovery: setup and validation of a fragment-to-lead computational protocol using S4MPLE.
    Hoffer L; Renaud JP; Horvath D
    J Chem Inf Model; 2013 Apr; 53(4):836-51. PubMed ID: 23537132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FFLOM: A Flow-Based Autoregressive Model for Fragment-to-Lead Optimization.
    Jin J; Wang D; Shi G; Bao J; Wang J; Zhang H; Pan P; Li D; Yao X; Liu H; Hou T; Kang Y
    J Med Chem; 2023 Aug; 66(15):10808-10823. PubMed ID: 37471134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploiting pretrained biochemical language models for targeted drug design.
    Uludoğan G; Ozkirimli E; Ulgen KO; Karalı N; Özgür A
    Bioinformatics; 2022 Sep; 38(Suppl_2):ii155-ii161. PubMed ID: 36124801
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-Objective Drug Design Based on Graph-Fragment Molecular Representation and Deep Evolutionary Learning.
    Mukaidaisi M; Vu A; Grantham K; Tchagang A; Li Y
    Front Pharmacol; 2022; 13():920747. PubMed ID: 35860028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. OptiMol: Optimization of Binding Affinities in Chemical Space for Drug Discovery.
    Boitreaud J; Mallet V; Oliver C; Waldispühl J
    J Chem Inf Model; 2020 Dec; 60(12):5658-5666. PubMed ID: 32986426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fragment informatics and computational fragment-based drug design: an overview and update.
    Sheng C; Zhang W
    Med Res Rev; 2013 May; 33(3):554-98. PubMed ID: 22430881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gargoyles: An Open Source Graph-Based Molecular Optimization Method Based on Deep Reinforcement Learning.
    Erikawa D; Yasuo N; Suzuki T; Nakamura S; Sekijima M
    ACS Omega; 2023 Oct; 8(40):37431-37441. PubMed ID: 37841174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MGCVAE: Multi-Objective Inverse Design via Molecular Graph Conditional Variational Autoencoder.
    Lee M; Min K
    J Chem Inf Model; 2022 Jun; 62(12):2943-2950. PubMed ID: 35666276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Streamlining Computational Fragment-Based Drug Discovery through Evolutionary Optimization Informed by Ligand-Based Virtual Prescreening.
    Chandraghatgi R; Ji HF; Rosen GL; Sokhansanj BA
    J Chem Inf Model; 2024 May; 64(9):3826-3840. PubMed ID: 38696451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ScaffoldGVAE: scaffold generation and hopping of drug molecules via a variational autoencoder based on multi-view graph neural networks.
    Hu C; Li S; Yang C; Chen J; Xiong Y; Fan G; Liu H; Hong L
    J Cheminform; 2023 Oct; 15(1):91. PubMed ID: 37794460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IEV2Mol: Molecular Generative Model Considering Protein-Ligand Interaction Energy Vectors.
    Ozawa M; Nakamura S; Yasuo N; Sekijima M
    J Chem Inf Model; 2024 Sep; 64(18):6969-6978. PubMed ID: 39254942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of structure- and ligand-based scoring functions for deep generative models: a GPCR case study.
    Thomas M; Smith RT; O'Boyle NM; de Graaf C; Bender A
    J Cheminform; 2021 May; 13(1):39. PubMed ID: 33985583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RELATION: A Deep Generative Model for Structure-Based De Novo Drug Design.
    Wang M; Hsieh CY; Wang J; Wang D; Weng G; Shen C; Yao X; Bing Z; Li H; Cao D; Hou T
    J Med Chem; 2022 Jul; 65(13):9478-9492. PubMed ID: 35713420
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sc2Mol: a scaffold-based two-step molecule generator with variational autoencoder and transformer.
    Liao Z; Xie L; Mamitsuka H; Zhu S
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36576008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo drug design by iterative multiobjective deep reinforcement learning with graph-based molecular quality assessment.
    Fang Y; Pan X; Shen HB
    Bioinformatics; 2023 Apr; 39(4):. PubMed ID: 36961341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Silico Structure-Based Approach for Group Efficiency Estimation in Fragment-Based Drug Design Using Evaluation of Fragment Contributions.
    Shulga DA; Ivanov NN; Palyulin VA
    Molecules; 2022 Mar; 27(6):. PubMed ID: 35335347
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.