These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 39230711)

  • 1. Graspot: a graph attention network for spatial transcriptomics data integration with optimal transport.
    Gao Z; Cao K; Wan L
    Bioinformatics; 2024 Sep; 40(Suppl 2):ii137-ii145. PubMed ID: 39230711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A graph self-supervised residual learning framework for domain identification and data integration of spatial transcriptomics.
    Huang J; Fu X; Zhang Z; Xie Y; Liu S; Wang Y; Zhao Z; Peng Y
    Commun Biol; 2024 Sep; 7(1):1123. PubMed ID: 39266614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alignment and integration of spatial transcriptomics data.
    Zeira R; Land M; Strzalkowski A; Raphael BJ
    Nat Methods; 2022 May; 19(5):567-575. PubMed ID: 35577957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SpaNCMG: improving spatial domains identification of spatial transcriptomics using neighborhood-complementary mixed-view graph convolutional network.
    Si Z; Li H; Shang W; Zhao Y; Kong L; Long C; Zuo Y; Feng Z
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38811360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical batch-aware embedded integration, dimension reduction, and alignment for spatial transcriptomics.
    Li Y; Zhang S
    Bioinformatics; 2024 Oct; 40(10):. PubMed ID: 39400541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.
    Li H; Li H; Zhou J; Gao X
    Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating spatial transcriptomics and bulk RNA-seq: predicting gene expression with enhanced resolution through graph attention networks.
    Baul S; Tanvir Ahmed K; Jiang Q; Wang G; Li Q; Yong J; Zhang W
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38960406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SPACEL: deep learning-based characterization of spatial transcriptome architectures.
    Xu H; Wang S; Fang M; Luo S; Chen C; Wan S; Wang R; Tang M; Xue T; Li B; Lin J; Qu K
    Nat Commun; 2023 Nov; 14(1):7603. PubMed ID: 37990022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scBOL: a universal cell type identification framework for single-cell and spatial transcriptomics data.
    Zhai Y; Chen L; Deng M
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking clustering, alignment, and integration methods for spatial transcriptomics.
    Hu Y; Xie M; Li Y; Rao M; Shen W; Luo C; Qin H; Baek J; Zhou XM
    Genome Biol; 2024 Aug; 25(1):212. PubMed ID: 39123269
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network.
    Huo Y; Guo Y; Wang J; Xue H; Feng Y; Chen W; Li X
    J Genet Genomics; 2023 Sep; 50(9):720-733. PubMed ID: 37356752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurately deciphering spatial domains for spatially resolved transcriptomics with stCluster.
    Wang T; Shu H; Hu J; Wang Y; Chen J; Peng J; Shang X
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38975895
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ST-SCSR: identifying spatial domains in spatial transcriptomics data via structure correlation and self-representation.
    Zhang M; Zhang W; Ma X
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39228303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.
    Peng L; He X; Peng X; Li Z; Zhang L
    Comput Biol Med; 2023 Nov; 166():107440. PubMed ID: 37738898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering cell-cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network.
    Yang W; Wang P; Xu S; Wang T; Luo M; Cai Y; Xu C; Xue G; Que J; Ding Q; Jin X; Yang Y; Pang F; Pang B; Lin Y; Nie H; Xu Z; Ji Y; Jiang Q
    Nat Commun; 2024 Aug; 15(1):7101. PubMed ID: 39155292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. STalign: Alignment of spatial transcriptomics data using diffeomorphic metric mapping.
    Clifton K; Anant M; Aihara G; Atta L; Aimiuwu OK; Kebschull JM; Miller MI; Tward D; Fan J
    Nat Commun; 2023 Dec; 14(1):8123. PubMed ID: 38065970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alignment of spatial transcriptomics data using diffeomorphic metric mapping.
    Clifton K; Anant M; Aihara G; Atta L; Aimiuwu OK; Kebschull JM; Miller MI; Tward D; Fan J
    bioRxiv; 2023 Aug; ():. PubMed ID: 37090640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A multi-modality and multi-granularity collaborative learning framework for identifying spatial domains and spatially variable genes.
    Liang X; Liu P; Xue L; Chen B; Liu W; Shi W; Wang Y; Chen X; Luo J
    Bioinformatics; 2024 Oct; 40(10):. PubMed ID: 39418177
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SPIRAL: integrating and aligning spatially resolved transcriptomics data across different experiments, conditions, and technologies.
    Guo T; Yuan Z; Pan Y; Wang J; Chen F; Zhang MQ; Li X
    Genome Biol; 2023 Oct; 24(1):241. PubMed ID: 37864231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SELF-Former: multi-scale gene filtration transformer for single-cell spatial reconstruction.
    Chen T; Wei X; Xie L; Zhang Y; Liu C; Shen W; Wu S; Wong HS
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39413798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.