These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 39231224)
1. Two-dimensional fully ferroelectric-gated hybrid computing-in-memory hardware for high-precision and energy-efficient dynamic tracking. Lu T; Xue J; Shen P; Liu H; Gao X; Li X; Hao J; Huang D; Zhao R; Yan J; Yang M; Yan B; Gao P; Lin Z; Yang Y; Ren TL Sci Adv; 2024 Sep; 10(36):eadp0174. PubMed ID: 39231224 [TBL] [Abstract][Full Text] [Related]
2. Ferroelectric Hafnia-Based M3D FeTFTs Annealed at Extremely Low Temperatures and TCAM Cells for Computing-in-Memory Applications. Joh H; Nam S; Jung M; Shin H; Cho SH; Jeon S ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37874546 [TBL] [Abstract][Full Text] [Related]
3. Hierarchical processing enabled by 2D ferroelectric semiconductor transistor for low-power and high-efficiency AI vision system. Wu G; Xiang L; Wang W; Yao C; Yan Z; Zhang C; Wu J; Liu Y; Zheng B; Liu H; Hu C; Sun X; Zhu C; Wang Y; Xiong X; Wu Y; Gao L; Li D; Pan A; Li S Sci Bull (Beijing); 2024 Feb; 69(4):473-482. PubMed ID: 38123429 [TBL] [Abstract][Full Text] [Related]
4. Van der Waals Ferroelectric Semiconductor Field Effect Transistor for In-Memory Computing. Liao J; Wen W; Wu J; Zhou Y; Hussain S; Hu H; Li J; Liaqat A; Zhu H; Jiao L; Zheng Q; Xie L ACS Nano; 2023 Mar; 17(6):6095-6102. PubMed ID: 36912657 [TBL] [Abstract][Full Text] [Related]
5. Dual-Ferroelectric-Coupling-Engineered Two-Dimensional Transistors for Multifunctional In-Memory Computing. Luo ZD; Zhang S; Liu Y; Zhang D; Gan X; Seidel J; Liu Y; Han G; Alexe M; Hao Y ACS Nano; 2022 Feb; 16(2):3362-3372. PubMed ID: 35147405 [TBL] [Abstract][Full Text] [Related]
6. Reconfigurable aJ-Level Ferroelectric Transistor-Based Boolean Logic for Logic-in-Memory. Zhao R; Liu H; Yang M; Lu T; Li Z; Shi Z; Wang Z; Liu J; Yang Y; Ren TL Nano Lett; 2024 Sep; 24(35):10957-10963. PubMed ID: 39171725 [TBL] [Abstract][Full Text] [Related]
7. Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors. Kim KH; Oh S; Fiagbenu MMA; Zheng J; Musavigharavi P; Kumar P; Trainor N; Aljarb A; Wan Y; Kim HM; Katti K; Song S; Kim G; Tang Z; Fu JH; Hakami M; Tung V; Redwing JM; Stach EA; Olsson RH; Jariwala D Nat Nanotechnol; 2023 Sep; 18(9):1044-1050. PubMed ID: 37217764 [TBL] [Abstract][Full Text] [Related]
8. A Monolithic Stochastic Computing Architecture for Energy Efficient Arithmetic. Ravichandran H; Zheng Y; Schranghamer TF; Trainor N; Redwing JM; Das S Adv Mater; 2023 Jan; 35(2):e2206168. PubMed ID: 36308032 [TBL] [Abstract][Full Text] [Related]
9. Monolithic 3D Integration of Analog RRAM-Based Computing-in-Memory and Sensor for Energy-Efficient Near-Sensor Computing. Du Y; Tang J; Li Y; Xi Y; Li Y; Li J; Huang H; Qin Q; Zhang Q; Gao B; Deng N; Qian H; Wu H Adv Mater; 2024 May; 36(22):e2302658. PubMed ID: 37652463 [TBL] [Abstract][Full Text] [Related]
10. Ferroelectric materials for neuroinspired computing applications. Wang D; Hao S; Dkhil B; Tian B; Duan C Fundam Res; 2024 Sep; 4(5):1272-1291. PubMed ID: 39431127 [TBL] [Abstract][Full Text] [Related]
11. An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Ning H; Yu Z; Zhang Q; Wen H; Gao B; Mao Y; Li Y; Zhou Y; Zhou Y; Chen J; Liu L; Wang W; Li T; Li Y; Meng W; Li W; Li Y; Qiu H; Shi Y; Chai Y; Wu H; Wang X Nat Nanotechnol; 2023 May; 18(5):493-500. PubMed ID: 36941361 [TBL] [Abstract][Full Text] [Related]
12. Simulation of a Fully Digital Computing-in-Memory for Non-Volatile Memory for Artificial Intelligence Edge Applications. Hu H; Feng C; Zhou H; Dong D; Pan X; Wang X; Zhang L; Cheng S; Pang W; Liu J Micromachines (Basel); 2023 May; 14(6):. PubMed ID: 37374760 [TBL] [Abstract][Full Text] [Related]
14. Hybrid neuromorphic hardware with sparing 2D synapse and CMOS neuron for character recognition. Xue S; Wang S; Wu T; Di Z; Xu N; Sun Y; Zeng C; Ma S; Zhou P Sci Bull (Beijing); 2023 Oct; 68(20):2336-2343. PubMed ID: 37714804 [TBL] [Abstract][Full Text] [Related]
15. Hybrid oxide brain-inspired neuromorphic devices for hardware implementation of artificial intelligence. Wang J; Zhuge X; Zhuge F Sci Technol Adv Mater; 2021 May; 22(1):326-344. PubMed ID: 34025215 [TBL] [Abstract][Full Text] [Related]
16. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network. Seok H; Son S; Jathar SB; Lee J; Kim T Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991829 [TBL] [Abstract][Full Text] [Related]
17. Supervised Learning in All FeFET-Based Spiking Neural Network: Opportunities and Challenges. Dutta S; Schafer C; Gomez J; Ni K; Joshi S; Datta S Front Neurosci; 2020; 14():634. PubMed ID: 32670012 [TBL] [Abstract][Full Text] [Related]
18. Ultrathin Nitride Ferroic Memory with Large ON/OFF Ratios for Analog In-Memory Computing. Wang D; Wang P; Mondal S; Hu M; Wu Y; Ma T; Mi Z Adv Mater; 2023 May; 35(20):e2210628. PubMed ID: 36892539 [TBL] [Abstract][Full Text] [Related]
19. FinFET 6T-SRAM All-Digital Compute-in-Memory for Artificial Intelligence Applications: An Overview and Analysis. Gul W; Shams M; Al-Khalili D Micromachines (Basel); 2023 Jul; 14(8):. PubMed ID: 37630071 [TBL] [Abstract][Full Text] [Related]
20. Ultralow-power in-memory computing based on ferroelectric memcapacitor network. Tian B; Xie Z; Chen L; Hao S; Liu Y; Feng G; Liu X; Liu H; Yang J; Zhang Y; Bai W; Lin T; Shen H; Meng X; Zhong N; Peng H; Yue F; Tang X; Wang J; Zhu Q; Ivry Y; Dkhil B; Chu J; Duan C Exploration (Beijing); 2023 Jun; 3(3):20220126. PubMed ID: 37933380 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]