These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 39232068)
1. Preoperative prediction of CNS WHO grade and tumour aggressiveness in intracranial meningioma based on radiomics and structured semantics. Kalasauskas D; Kosterhon M; Kurz E; Schmidt L; Altmann S; Grauhan NF; Sommer C; Othman A; Brockmann MA; Ringel F; Keric N Sci Rep; 2024 Sep; 14(1):20586. PubMed ID: 39232068 [TBL] [Abstract][Full Text] [Related]
2. Machine learning-based radiomics analysis in predicting the meningioma grade using multiparametric MRI. Hu J; Zhao Y; Li M; Liu J; Wang F; Weng Q; Wang X; Cao D Eur J Radiol; 2020 Oct; 131():109251. PubMed ID: 32916409 [TBL] [Abstract][Full Text] [Related]
3. Radiomics and machine learning may accurately predict the grade and histological subtype in meningiomas using conventional and diffusion tensor imaging. Park YW; Oh J; You SC; Han K; Ahn SS; Choi YS; Chang JH; Kim SH; Lee SK Eur Radiol; 2019 Aug; 29(8):4068-4076. PubMed ID: 30443758 [TBL] [Abstract][Full Text] [Related]
4. Meningiomas: Preoperative predictive histopathological grading based on radiomics of MRI. Han Y; Wang T; Wu P; Zhang H; Chen H; Yang C Magn Reson Imaging; 2021 Apr; 77():36-43. PubMed ID: 33220449 [TBL] [Abstract][Full Text] [Related]
5. Development of a Clinicopathological-Radiomics Model for Predicting Progression and Recurrence in Meningioma Patients. He M; Wang X; Huang C; Peng X; Li N; Li F; Dong H; Wang Z; Zhao L; Wu F; Zhang M; Guan X; Xu X Acad Radiol; 2024 May; 31(5):2061-2073. PubMed ID: 37993304 [TBL] [Abstract][Full Text] [Related]
6. Deep learning-based automatic segmentation of meningioma from T1-weighted contrast-enhanced MRI for preoperative meningioma differentiation using radiomic features. Yang L; Wang T; Zhang J; Kang S; Xu S; Wang K BMC Med Imaging; 2024 Mar; 24(1):56. PubMed ID: 38443817 [TBL] [Abstract][Full Text] [Related]
7. Deep learning-based automatic segmentation of meningioma from multiparametric MRI for preoperative meningioma differentiation using radiomic features: a multicentre study. Chen H; Li S; Zhang Y; Liu L; Lv X; Yi Y; Ruan G; Ke C; Feng Y Eur Radiol; 2022 Oct; 32(10):7248-7259. PubMed ID: 35420299 [TBL] [Abstract][Full Text] [Related]
8. Radiomic signatures of meningiomas using the Ki-67 proliferation index as a prognostic marker of clinical outcomes. Khanna O; Fathi Kazerooni A; Arif S; Mahtabfar A; Momin AA; Andrews CE; Hafazalla K; Baldassari MP; Velagapudi L; Garcia JA; Sako C; Farrell CJ; Evans JJ; Judy KD; Andrews DW; Flanders AE; Shi W; Davatzikos C Neurosurg Focus; 2023 Jun; 54(6):E17. PubMed ID: 37552657 [TBL] [Abstract][Full Text] [Related]
9. Risk of tumor recurrence in intracranial meningiomas: comparative analyses of the predictive value of the postoperative tumor volume and the Simpson classification. Spille DC; Hess K; Bormann E; Sauerland C; Brokinkel C; Warneke N; Mawrin C; Paulus W; Stummer W; Brokinkel B J Neurosurg; 2021 Jun; 134(6):1764-1771. PubMed ID: 32679565 [TBL] [Abstract][Full Text] [Related]
10. Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas. Zhao Z; Nie C; Zhao L; Xiao D; Zheng J; Zhang H; Yan P; Jiang X; Zhao H Eur Radiol; 2024 Apr; 34(4):2468-2479. PubMed ID: 37812296 [TBL] [Abstract][Full Text] [Related]
11. Accuracy of Radiomics-Based Feature Analysis on Multiparametric Magnetic Resonance Images for Noninvasive Meningioma Grading. Laukamp KR; Shakirin G; Baeßler B; Thiele F; Zopfs D; Große Hokamp N; Timmer M; Kabbasch C; Perkuhn M; Borggrefe J World Neurosurg; 2019 Dec; 132():e366-e390. PubMed ID: 31476455 [TBL] [Abstract][Full Text] [Related]
12. Radiomics approach for prediction of recurrence in skull base meningiomas. Zhang Y; Chen JH; Chen TY; Lim SW; Wu TC; Kuo YT; Ko CC; Su MY Neuroradiology; 2019 Dec; 61(12):1355-1364. PubMed ID: 31324948 [TBL] [Abstract][Full Text] [Related]
13. A deep learning radiomics model may help to improve the prediction performance of preoperative grading in meningioma. Yang L; Xu P; Zhang Y; Cui N; Wang M; Peng M; Gao C; Wang T Neuroradiology; 2022 Jul; 64(7):1373-1382. PubMed ID: 35037985 [TBL] [Abstract][Full Text] [Related]
14. Radiomic Features of the Edema Region May Contribute to Grading Meningiomas With Peritumoral Edema. Guo Z; Tian Z; Shi F; Xu P; Zhang J; Ling C; Zeng Q J Magn Reson Imaging; 2023 Jul; 58(1):301-310. PubMed ID: 36259547 [TBL] [Abstract][Full Text] [Related]
15. A radiomics-based study for differentiating parasellar cavernous hemangiomas from meningiomas. Wang C; You L; Zhang X; Zhu Y; Zheng L; Huang W; Guo D; Dong Y Sci Rep; 2022 Sep; 12(1):15509. PubMed ID: 36109577 [TBL] [Abstract][Full Text] [Related]
16. Preoperative prediction of histopathological grading in patients with chondrosarcoma using MRI-based radiomics with semantic features. Li X; Zhang J; Leng Y; Liu J; Li L; Wan T; Dong W; Fan B; Gong L BMC Med Imaging; 2024 Jul; 24(1):171. PubMed ID: 38992609 [TBL] [Abstract][Full Text] [Related]
17. The development of a combined clinico-radiomics model for predicting post-operative recurrence in atypical meningiomas: a multicenter study. Ren L; Chen J; Deng J; Qing X; Cheng H; Wang D; Ji J; Chen H; Juratli TA; Wakimoto H; Gong Y; Hua L J Neurooncol; 2024 Jan; 166(1):59-71. PubMed ID: 38146046 [TBL] [Abstract][Full Text] [Related]
18. A deep learning radiomics model for preoperative grading in meningioma. Zhu Y; Man C; Gong L; Dong D; Yu X; Wang S; Fang M; Wang S; Fang X; Chen X; Tian J Eur J Radiol; 2019 Jul; 116():128-134. PubMed ID: 31153553 [TBL] [Abstract][Full Text] [Related]
19. Comparison of machine learning classifiers for differentiation of grade 1 from higher gradings in meningioma: A multicenter radiomics study. Hamerla G; Meyer HJ; Schob S; Ginat DT; Altman A; Lim T; Gihr GA; Horvath-Rizea D; Hoffmann KT; Surov A Magn Reson Imaging; 2019 Nov; 63():244-249. PubMed ID: 31425811 [TBL] [Abstract][Full Text] [Related]
20. Meningioma Consistency Can Be Defined by Combining the Radiomic Features of Magnetic Resonance Imaging and Ultrasound Elastography. A Pilot Study Using Machine Learning Classifiers. Cepeda S; Arrese I; García-García S; Velasco-Casares M; Escudero-Caro T; Zamora T; Sarabia R World Neurosurg; 2021 Feb; 146():e1147-e1159. PubMed ID: 33259973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]