These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 39232661)
1. Gaps in the usage and reporting of multiple imputation for incomplete data: findings from a scoping review of observational studies addressing causal questions. Mainzer RM; Moreno-Betancur M; Nguyen CD; Simpson JA; Carlin JB; Lee KJ BMC Med Res Methodol; 2024 Sep; 24(1):193. PubMed ID: 39232661 [TBL] [Abstract][Full Text] [Related]
2. Handling of missing data with multiple imputation in observational studies that address causal questions: protocol for a scoping review. Mainzer R; Moreno-Betancur M; Nguyen C; Simpson J; Carlin J; Lee K BMJ Open; 2023 Feb; 13(2):e065576. PubMed ID: 36725096 [TBL] [Abstract][Full Text] [Related]
4. The rise of multiple imputation: a review of the reporting and implementation of the method in medical research. Hayati Rezvan P; Lee KJ; Simpson JA BMC Med Res Methodol; 2015 Apr; 15():30. PubMed ID: 25880850 [TBL] [Abstract][Full Text] [Related]
5. Recoverability and estimation of causal effects under typical multivariable missingness mechanisms. Zhang J; Dashti SG; Carlin JB; Lee KJ; Moreno-Betancur M Biom J; 2024 Apr; 66(3):e2200326. PubMed ID: 38637322 [TBL] [Abstract][Full Text] [Related]
6. Assumptions and analysis planning in studies with missing data in multiple variables: moving beyond the MCAR/MAR/MNAR classification. Lee KJ; Carlin JB; Simpson JA; Moreno-Betancur M Int J Epidemiol; 2023 Aug; 52(4):1268-1275. PubMed ID: 36779333 [TBL] [Abstract][Full Text] [Related]
7. Outcome-sensitive multiple imputation: a simulation study. Kontopantelis E; White IR; Sperrin M; Buchan I BMC Med Res Methodol; 2017 Jan; 17(1):2. PubMed ID: 28068910 [TBL] [Abstract][Full Text] [Related]
8. Comparison of techniques for handling missing covariate data within prognostic modelling studies: a simulation study. Marshall A; Altman DG; Royston P; Holder RL BMC Med Res Methodol; 2010 Jan; 10():7. PubMed ID: 20085642 [TBL] [Abstract][Full Text] [Related]
9. Handling missing data when estimating causal effects with targeted maximum likelihood estimation. Dashti SG; Lee KJ; Simpson JA; White IR; Carlin JB; Moreno-Betancur M Am J Epidemiol; 2024 Jul; 193(7):1019-1030. PubMed ID: 38400653 [TBL] [Abstract][Full Text] [Related]
10. Population-calibrated multiple imputation for a binary/categorical covariate in categorical regression models. Pham TM; Carpenter JR; Morris TP; Wood AM; Petersen I Stat Med; 2019 Feb; 38(5):792-808. PubMed ID: 30328123 [TBL] [Abstract][Full Text] [Related]
11. Comparison of methods for handling covariate missingness in propensity score estimation with a binary exposure. Coffman DL; Zhou J; Cai X BMC Med Res Methodol; 2020 Jun; 20(1):168. PubMed ID: 32586271 [TBL] [Abstract][Full Text] [Related]
12. Multiple imputation using auxiliary imputation variables that only predict missingness can increase bias due to data missing not at random. Curnow E; Cornish RP; Heron JE; Carpenter JR; Tilling K BMC Med Res Methodol; 2024 Oct; 24(1):231. PubMed ID: 39375597 [TBL] [Abstract][Full Text] [Related]
13. Framework for the treatment and reporting of missing data in observational studies: The Treatment And Reporting of Missing data in Observational Studies framework. Lee KJ; Tilling KM; Cornish RP; Little RJA; Bell ML; Goetghebeur E; Hogan JW; Carpenter JR; J Clin Epidemiol; 2021 Jun; 134():79-88. PubMed ID: 33539930 [TBL] [Abstract][Full Text] [Related]
14. Is using multiple imputation better than complete case analysis for estimating a prevalence (risk) difference in randomized controlled trials when binary outcome observations are missing? Mukaka M; White SA; Terlouw DJ; Mwapasa V; Kalilani-Phiri L; Faragher EB Trials; 2016 Jul; 17():341. PubMed ID: 27450066 [TBL] [Abstract][Full Text] [Related]
15. Accounting for missing data in statistical analyses: multiple imputation is not always the answer. Hughes RA; Heron J; Sterne JAC; Tilling K Int J Epidemiol; 2019 Aug; 48(4):1294-1304. PubMed ID: 30879056 [TBL] [Abstract][Full Text] [Related]
16. Accounting for not-at-random missingness through imputation stacking. Beesley LJ; Taylor JMG Stat Med; 2021 Nov; 40(27):6118-6132. PubMed ID: 34459011 [TBL] [Abstract][Full Text] [Related]
17. Multiple imputation with missing indicators as proxies for unmeasured variables: simulation study. Sperrin M; Martin GP BMC Med Res Methodol; 2020 Jul; 20(1):185. PubMed ID: 32640992 [TBL] [Abstract][Full Text] [Related]
18. Comparison of methods for handling missing data on immunohistochemical markers in survival analysis of breast cancer. Ali AM; Dawson SJ; Blows FM; Provenzano E; Ellis IO; Baglietto L; Huntsman D; Caldas C; Pharoah PD Br J Cancer; 2011 Feb; 104(4):693-9. PubMed ID: 21266980 [TBL] [Abstract][Full Text] [Related]
19. Canonical Causal Diagrams to Guide the Treatment of Missing Data in Epidemiologic Studies. Moreno-Betancur M; Lee KJ; Leacy FP; White IR; Simpson JA; Carlin JB Am J Epidemiol; 2018 Dec; 187(12):2705-2715. PubMed ID: 30124749 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of a weighting approach for performing sensitivity analysis after multiple imputation. Rezvan PH; White IR; Lee KJ; Carlin JB; Simpson JA BMC Med Res Methodol; 2015 Oct; 15():83. PubMed ID: 26464305 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]