These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 39233184)
1. Sustainable production of C50 carotenoid bacterioruberin from methane using soil-enriched microbial consortia. Guo S; Song Q; Song X; Zhang C; Fei Q Bioresour Technol; 2024 Nov; 412():131415. PubMed ID: 39233184 [TBL] [Abstract][Full Text] [Related]
2. Sustainable production of bacterioruberin carotenoid and its derivatives from Arthrobacter agilis NP20 on whey-based medium: optimization and product characterization. Noby N; Khattab SN; Soliman NA Bioresour Bioprocess; 2023 Jul; 10(1):46. PubMed ID: 38647623 [TBL] [Abstract][Full Text] [Related]
3. Enhancement of Nitrous Oxide Emissions in Soil Microbial Consortia via Copper Competition between Proteobacterial Methanotrophs and Denitrifiers. Chang J; Kim DD; Semrau JD; Lee JY; Heo H; Gu W; Yoon S Appl Environ Microbiol; 2021 Feb; 87(5):e0230120. PubMed ID: 33355098 [TBL] [Abstract][Full Text] [Related]
4. Microbial consortia including methanotrophs: some benefits of living together. Singh R; Ryu J; Kim SW J Microbiol; 2019 Nov; 57(11):939-952. PubMed ID: 31659683 [TBL] [Abstract][Full Text] [Related]
5. Synthesizing value-added products from methane by a new Methylomonas. Guo W; Li D; He R; Wu M; Chen W; Gao F; Zhang Z; Yao Y; Yu L; Chen S J Appl Microbiol; 2017 Nov; 123(5):1214-1227. PubMed ID: 28888065 [TBL] [Abstract][Full Text] [Related]
6. Microbial Community and Greenhouse Gas Fluxes from Abandoned Rice Paddies with Different Vegetation. Kim S; Lee S; McCormick M; Kim JG; Kang H Microb Ecol; 2016 Oct; 72(3):692-703. PubMed ID: 27352281 [TBL] [Abstract][Full Text] [Related]
7. Complete biosynthetic pathway of the C50 carotenoid bacterioruberin from lycopene in the extremely halophilic archaeon Haloarcula japonica. Yang Y; Yatsunami R; Ando A; Miyoko N; Fukui T; Takaichi S; Nakamura S J Bacteriol; 2015 May; 197(9):1614-23. PubMed ID: 25712483 [TBL] [Abstract][Full Text] [Related]
8. Type II methanotrophs: A promising microbial cell-factory platform for bioconversion of methane to chemicals. Nguyen DTN; Lee OK; Nguyen TT; Lee EY Biotechnol Adv; 2021; 47():107700. PubMed ID: 33548453 [TBL] [Abstract][Full Text] [Related]
9. Effect of substrate interaction on oxidation of methane and benzene in enriched microbial consortia from landfill cover soil. Lee EH; Park H; Cho KS J Environ Sci Health A Tox Hazard Subst Environ Eng; 2011; 46(9):997-1007. PubMed ID: 21847790 [TBL] [Abstract][Full Text] [Related]
10. Microbial bacterioruberin: The new C50 carotenoid player in food industries. Mussagy CU; Caicedo-Paz AV; Farias FO; de Souza Mesquita LM; Giuffrida D; Dufossé L Food Microbiol; 2024 Dec; 124():104623. PubMed ID: 39244374 [TBL] [Abstract][Full Text] [Related]
11. Ridge with no-tillage facilitates microbial N Cao W; Zhao J; Cai Y; Mo Y; Ma J; Zhang G; Jiang X; Jia Z Sci Total Environ; 2024 May; 923():171172. PubMed ID: 38402982 [TBL] [Abstract][Full Text] [Related]
12. Enrichment and characteristics of mixed methane-oxidizing bacteria from a Chinese coal mine. Jiang H; Duan C; Luo M; Xing XH Appl Microbiol Biotechnol; 2016 Dec; 100(24):10331-10341. PubMed ID: 27474022 [TBL] [Abstract][Full Text] [Related]
13. Optimization of bacterioruberin production from Halorubrum ruber and assessment of its antioxidant potential. Hwang CY; Cho ES; Kim S; Kim K; Seo MJ Microb Cell Fact; 2024 Jan; 23(1):2. PubMed ID: 38172950 [TBL] [Abstract][Full Text] [Related]
14. The biosynthesis mechanism of bacterioruberin in halophilic archaea revealed by genome and transcriptome analysis. Ma Y; Sun Z; Yang H; Xie W; Song M; Zhang B; Sui L Appl Environ Microbiol; 2024 Jul; 90(7):e0054024. PubMed ID: 38829054 [TBL] [Abstract][Full Text] [Related]
15. A comparative transcriptome analysis of the novel obligate methanotroph Methylomonas sp. DH-1 reveals key differences in transcriptional responses in C1 and secondary metabolite pathways during growth on methane and methanol. Nguyen AD; Kim D; Lee EY BMC Genomics; 2019 Feb; 20(1):130. PubMed ID: 30755173 [TBL] [Abstract][Full Text] [Related]
16. [Next generation sequencing and stable isotope probing of active microorganisms responsible for aerobic methane oxidation in red paddy soils]. Zheng Y; Jia Z Wei Sheng Wu Xue Bao; 2013 Feb; 53(2):173-84. PubMed ID: 23627110 [TBL] [Abstract][Full Text] [Related]
17. Effect of temperature on methane oxidation and community composition in landfill cover soil. Reddy KR; Rai RK; Green SJ; Chetri JK J Ind Microbiol Biotechnol; 2019 Oct; 46(9-10):1283-1295. PubMed ID: 31317292 [TBL] [Abstract][Full Text] [Related]
18. Coupled steel slag and biochar amendment correlated with higher methanotrophic abundance and lower CH Wang M; Wang C; Lan X; Abid AA; Xu X; Singla A; Sardans J; Llusià J; Peñuelas J; Wang W Environ Geochem Health; 2020 Feb; 42(2):483-497. PubMed ID: 31342217 [TBL] [Abstract][Full Text] [Related]
20. Conversion of methane-derived carbon and microbial community in enrichment cultures in response to O2 availability. Wei XM; He R; Chen M; Su Y; Ma RC Environ Sci Pollut Res Int; 2016 Apr; 23(8):7517-28. PubMed ID: 26728286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]