These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 39233300)
1. Adsorption parameters optimization of spent coffee ground biochar for methylene blue removal using response surface methodology. Nagarajan T; Binti Mohd Fekeri NH; Raju G; Shanmugan S; Jeppu G; Walvekar R; Rustagi S; Khalid M Chemosphere; 2024 Sep; 364():143242. PubMed ID: 39233300 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of novel composite material with spent coffee ground biochar and steel slag zeolite for enhanced dye and phosphate removal. Noorin S; Paul T; Ghosh A; Yee JJ; Park SH Water Environ Res; 2024 Oct; 96(10):e11137. PubMed ID: 39323177 [TBL] [Abstract][Full Text] [Related]
3. Investigating the adsorption potential of char derived from waste latex for methylene blue removal. Nagarajan T; Vilosamy K; Raju G; Shanmugan S; Walvekar R; Rustagi S; Khalid M Chemosphere; 2024 Jun; 358():141936. PubMed ID: 38614393 [TBL] [Abstract][Full Text] [Related]
4. Adsorption study of methylene blue dye using activated carbon prepared from waste palm fiber. Benmenine A; Saidat M; Mecheri R; Ghamri ANE; Zennou N; Saleh M; Dizge N Environ Monit Assess; 2024 Aug; 196(9):844. PubMed ID: 39190206 [TBL] [Abstract][Full Text] [Related]
5. Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon. Ozer A; Dursun G J Hazard Mater; 2007 Jul; 146(1-2):262-9. PubMed ID: 17204366 [TBL] [Abstract][Full Text] [Related]
6. Adsorption of Methylene blue and Rhodamine B by using biochar derived from Pongamia glabra seed cover. Bordoloi N; Dey MD; Mukhopadhyay R; Kataki R Water Sci Technol; 2018 Feb; 77(3-4):638-646. PubMed ID: 29431708 [TBL] [Abstract][Full Text] [Related]
7. Experimental investigation of H Waghmare C; Ghodmare S; Ansari K; Dehghani MH; Amir Khan M; Hasan MA; Islam S; Khan NA; Zahmatkesh S J Environ Manage; 2023 Nov; 345():118815. PubMed ID: 37633104 [TBL] [Abstract][Full Text] [Related]
8. Optimization and mechanistic approach for removal of crystal violet and methylene blue dyes Hapiz A; Jawad AH; Wilson LD; ALOthman ZA; Abdulhameed AS; Algburi S Int J Phytoremediation; 2024; 26(4):579-593. PubMed ID: 37740456 [TBL] [Abstract][Full Text] [Related]
9. High surface area activated carbon from a pineapple ( Hapiz A; Jawad AH; Wilson LD; ALOthman ZA Int J Phytoremediation; 2024 Feb; 26(3):324-338. PubMed ID: 37545130 [TBL] [Abstract][Full Text] [Related]
10. Comparative study for adsorption of methylene blue dye on biochar derived from orange peel and banana biomass in aqueous solutions. Amin MT; Alazba AA; Shafiq M Environ Monit Assess; 2019 Nov; 191(12):735. PubMed ID: 31707527 [TBL] [Abstract][Full Text] [Related]
11. Adsorptive removal of methylene blue by tea waste. Uddin MT; Islam MA; Mahmud S; Rukanuzzaman M J Hazard Mater; 2009 May; 164(1):53-60. PubMed ID: 18801614 [TBL] [Abstract][Full Text] [Related]
12. The Use of High Surface Area Mesoporous-Activated Carbon from Longan Seed Biomass for Increasing Capacity and Kinetics of Methylene Blue Adsorption from Aqueous Solution. Lawtae P; Tangsathitkulchai C Molecules; 2021 Oct; 26(21):. PubMed ID: 34770928 [TBL] [Abstract][Full Text] [Related]
13. Application of Optimization Response Surface for the Adsorption of Methylene Blue Dye onto Zinc-coated Activated Carbon. Altıntıg E; Sarıcı B; Bozdag D; Over Ozcelik T; Karakaş M; Altundag H Environ Monit Assess; 2024 Jul; 196(7):682. PubMed ID: 38954055 [TBL] [Abstract][Full Text] [Related]
14. Activated carbons from waste biomass: an alternative use for biodiesel production solid residues. Nunes AA; Franca AS; Oliveira LS Bioresour Technol; 2009 Mar; 100(5):1786-92. PubMed ID: 18996006 [TBL] [Abstract][Full Text] [Related]
15. Removal of methylene blue dye from aqueous solution using an efficient chitosan-pectin bio-adsorbent: kinetics and isotherm studies. Mohrazi A; Ghasemi-Fasaei R Environ Monit Assess; 2023 Jan; 195(2):339. PubMed ID: 36705863 [TBL] [Abstract][Full Text] [Related]
16. Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. Nasuha N; Hameed BH; Din AT J Hazard Mater; 2010 Mar; 175(1-3):126-32. PubMed ID: 19879046 [TBL] [Abstract][Full Text] [Related]
17. Activated carbon-alginate beads impregnated with surfactant as sustainable adsorbent for efficient removal of methylene blue. Alamin NU; Khan AS; Nasrullah A; Iqbal J; Ullah Z; Din IU; Muhammad N; Khan SZ Int J Biol Macromol; 2021 Apr; 176():233-243. PubMed ID: 33549668 [TBL] [Abstract][Full Text] [Related]
18. Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology. Roosta M; Ghaedi M; Daneshfar A; Sahraei R; Asghari A Ultrason Sonochem; 2014 Jan; 21(1):242-52. PubMed ID: 23856588 [TBL] [Abstract][Full Text] [Related]
19. Green algae Ulva lactuca-derived biochar-sulfur improves the adsorption of methylene blue from water. Shoaib AGM; Van HT; Tran DT; El Sikaily A; Hassaan MA; El Nemr A Sci Rep; 2024 May; 14(1):11583. PubMed ID: 38773106 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous removal of cationic methylene blue and anionic reactive red 198 dyes using magnetic activated carbon nanoparticles: equilibrium, and kinetics analysis. Abuzerr S; Darwish M; Mahvi AH Water Sci Technol; 2018 May; 2017(2):534-545. PubMed ID: 29851406 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]