These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 39234189)

  • 1. Efficient use of binned data for imputing univariate time series data.
    Darji J; Biswas N; Padul V; Gill J; Kesari S; Ashili S
    Front Big Data; 2024; 7():1422650. PubMed ID: 39234189
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binned Data Provide Better Imputation of Missing Time Series Data from Wearables.
    Chakrabarti S; Biswas N; Karnani K; Padul V; Jones LD; Kesari S; Ashili S
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced methods for missing values imputation based on similarity learning.
    Fouad KM; Ismail MM; Azar AT; Arafa MM
    PeerJ Comput Sci; 2021; 7():e619. PubMed ID: 34395861
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imputation of missing values for cochlear implant candidate audiometric data and potential applications.
    Pavelchek C; Michelson AP; Walia A; Ortmann A; Herzog J; Buchman CA; Shew MA
    PLoS One; 2023; 18(2):e0281337. PubMed ID: 36745652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial imputation for air pollutants data sets via low rank matrix completion algorithm.
    Liu X; Wang X; Zou L; Xia J; Pang W
    Environ Int; 2020 Jun; 139():105713. PubMed ID: 32289585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Approach for Imputation of Missing Values in Actigraphy Data: Algorithm Development Study.
    Jang JH; Choi J; Roh HW; Son SJ; Hong CH; Kim EY; Kim TY; Yoon D
    JMIR Mhealth Uhealth; 2020 Jul; 8(7):e16113. PubMed ID: 32445459
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of the effects of imputation methods for missing data in predictive modelling of cohort study datasets.
    Li J; Guo S; Ma R; He J; Zhang X; Rui D; Ding Y; Li Y; Jian L; Cheng J; Guo H
    BMC Med Res Methodol; 2024 Feb; 24(1):41. PubMed ID: 38365610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating Methods for Imputing Missing Data from Longitudinal Monitoring of Athlete Workload.
    Benson LC; Stilling C; Owoeye OBA; Emery CA
    J Sports Sci Med; 2021 Jun; 20(2):188-196. PubMed ID: 33948096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Dynamic Model for Imputing Missing Medical Data: A Multiobjective Particle Swarm Optimization Algorithm.
    Almasinejad P; Golabpour A; Mollakhalili Meybodi MR; Mirzaie K; Khosravi A
    J Healthc Eng; 2021; 2021():1203726. PubMed ID: 34659677
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Missing data imputation via the expectation-maximization algorithm can improve principal component analysis aimed at deriving biomarker profiles and dietary patterns.
    Malan L; Smuts CM; Baumgartner J; Ricci C
    Nutr Res; 2020 Mar; 75():67-76. PubMed ID: 32035304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imputation strategies when a continuous outcome is to be dichotomized for responder analysis: a simulation study.
    Floden L; Bell ML
    BMC Med Res Methodol; 2019 Jul; 19(1):161. PubMed ID: 31345166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple imputation to deal with missing EQ-5D-3L data: Should we impute individual domains or the actual index?
    Simons CL; Rivero-Arias O; Yu LM; Simon J
    Qual Life Res; 2015 Apr; 24(4):805-15. PubMed ID: 25471286
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluating Imputation Algorithms for Low-Depth Genotyping-By-Sequencing (GBS) Data.
    Chan AW; Hamblin MT; Jannink JL
    PLoS One; 2016; 11(8):e0160733. PubMed ID: 27537694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Missing Data Infilling Mechanisms for Recovering a Real-World Single Station Streamflow Observation.
    Baddoo TD; Li Z; Odai SN; Boni KRC; Nooni IK; Andam-Akorful SA
    Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selection of statistical technique for imputation of single site-univariate and multisite-multivariate methods for particulate pollutants time series data with long gaps and high missing percentage.
    K P; Shakya KS; Kumar P
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):75469-75488. PubMed ID: 37219777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Logistic regression vs. predictive mean matching for imputing binary covariates.
    Austin PC; van Buuren S
    Stat Methods Med Res; 2023 Nov; 32(11):2172-2183. PubMed ID: 37750213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wide range of missing imputation approaches in longitudinal data: a simulation study and real data analysis.
    Jahangiri M; Kazemnejad A; Goldfeld KS; Daneshpour MS; Mostafaei S; Khalili D; Moghadas MR; Akbarzadeh M
    BMC Med Res Methodol; 2023 Jul; 23(1):161. PubMed ID: 37415114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imputation by feature importance (IBFI): A methodology to envelop machine learning method for imputing missing patterns in time series data.
    Mir AA; Kearfott KJ; Çelebi FV; Rafique M
    PLoS One; 2022; 17(1):e0262131. PubMed ID: 35025953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Ensemble Method for Missing Data of Environmental Sensor Considering Univariate and Multivariate Characteristics.
    Choi C; Jung H; Cho J
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A real data-driven simulation strategy to select an imputation method for mixed-type trait data.
    May JA; Feng Z; Adamowicz SJ
    PLoS Comput Biol; 2023 Mar; 19(3):e1010154. PubMed ID: 36947561
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.