These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39234964)
1. Semiclassical dynamics in Wigner phase space II: Nonadiabatic hybrid Wigner dynamics. Malpathak S; Ananth N J Chem Phys; 2024 Sep; 161(9):. PubMed ID: 39234964 [TBL] [Abstract][Full Text] [Related]
2. Semiclassical dynamics in Wigner phase space I: Adiabatic hybrid Wigner dynamics. Malpathak S; Ananth N J Chem Phys; 2024 Sep; 161(9):. PubMed ID: 39234962 [TBL] [Abstract][Full Text] [Related]
3. A new perspective for nonadiabatic dynamics with phase space mapping models. He X; Liu J J Chem Phys; 2019 Jul; 151(2):024105. PubMed ID: 31301706 [TBL] [Abstract][Full Text] [Related]
4. Generalized discrete truncated Wigner approximation for nonadiabatic quantum-classical dynamics. Lang H; Vendrell O; Hauke P J Chem Phys; 2021 Jul; 155(2):024111. PubMed ID: 34266254 [TBL] [Abstract][Full Text] [Related]
5. A phase-space semiclassical approach for modeling nonadiabatic nuclear dynamics with electronic spin. Wu Y; Bian X; Rawlinson JI; Littlejohn RG; Subotnik JE J Chem Phys; 2022 Jul; 157(1):011101. PubMed ID: 35803809 [TBL] [Abstract][Full Text] [Related]
6. Benchmarking various nonadiabatic semiclassical mapping dynamics methods with tensor-train thermo-field dynamics. Liu Z; Lyu N; Hu Z; Zeng H; Batista VS; Sun X J Chem Phys; 2024 Jul; 161(2):. PubMed ID: 38980091 [TBL] [Abstract][Full Text] [Related]
7. Unified Formulation of Phase Space Mapping Approaches for Nonadiabatic Quantum Dynamics. Liu J; He X; Wu B Acc Chem Res; 2021 Dec; 54(23):4215-4228. PubMed ID: 34756027 [TBL] [Abstract][Full Text] [Related]
8. A Semiclassical Framework for Mixed Quantum Classical Dynamics. Malpathak S; Church MS; Ananth N J Phys Chem A; 2022 Sep; 126(37):6359-6375. PubMed ID: 36070472 [TBL] [Abstract][Full Text] [Related]
9. Nonadiabatic simulations of photoisomerization and dissociation in ethylene using ab initio classical trajectories. Miyazaki K; Ananth N J Chem Phys; 2023 Sep; 159(12):. PubMed ID: 38127384 [TBL] [Abstract][Full Text] [Related]
10. Mixed semiclassical-classical propagators for the Wigner phase space representation. Koda S J Chem Phys; 2016 Apr; 144(15):154108. PubMed ID: 27389210 [TBL] [Abstract][Full Text] [Related]
11. Semiclassical quantization of nonadiabatic systems with hopping periodic orbits. Fujii M; Yamashita K J Chem Phys; 2015 Feb; 142(7):074104. PubMed ID: 25701999 [TBL] [Abstract][Full Text] [Related]
12. Semiclassical description of electronically nonadiabatic dynamics via the initial value representation. Ananth N; Venkataraman C; Miller WH J Chem Phys; 2007 Aug; 127(8):084114. PubMed ID: 17764236 [TBL] [Abstract][Full Text] [Related]
13. Herman-Kluk semiclassical dynamics in action-angle representation: new approaches to mapping quantum degrees of freedom. Saha R; Ovchinnikov M J Chem Phys; 2006 May; 124(20):204112. PubMed ID: 16774324 [TBL] [Abstract][Full Text] [Related]
14. Nonadiabatic semiclassical dynamics in the mixed quantum-classical initial value representation. Church MS; Hele TJH; Ezra GS; Ananth N J Chem Phys; 2018 Mar; 148(10):102326. PubMed ID: 29544340 [TBL] [Abstract][Full Text] [Related]
15. Multi-state harmonic models with globally shared bath for nonadiabatic dynamics in the condensed phase. Hu Z; Brian D; Sun X J Chem Phys; 2021 Sep; 155(12):124105. PubMed ID: 34598571 [TBL] [Abstract][Full Text] [Related]
16. Nonadiabatic surface hopping Herman-Kluk semiclassical initial value representation method revisited: applications to Tully's three model systems. Wu Y; Herman MF J Chem Phys; 2005 Oct; 123(14):144106. PubMed ID: 16238373 [TBL] [Abstract][Full Text] [Related]
17. Electronically nonadiabatic dynamics in complex molecular systems: an efficient and accurate semiclassical solution. Tao G J Phys Chem A; 2013 Jul; 117(28):5821-5. PubMed ID: 23799272 [TBL] [Abstract][Full Text] [Related]
18. Deriving the exact nonadiabatic quantum propagator in the mapping variable representation. Hele TJ; Ananth N Faraday Discuss; 2016 Dec; 195():269-289. PubMed ID: 27752681 [TBL] [Abstract][Full Text] [Related]
19. Initial-value semiclassical propagators for the Wigner phase space representation: Formulation based on the interpretation of the Moyal equation as a Schrödinger equation. Koda S J Chem Phys; 2015 Dec; 143(24):244110. PubMed ID: 26723654 [TBL] [Abstract][Full Text] [Related]
20. Semiclassical theory of electronically nonadiabatic chemical dynamics: incorporation of the Zhu-Nakamura theory into the frozen Gaussian propagation method. Kondorskiy A; Nakamura H J Chem Phys; 2004 May; 120(19):8937-54. PubMed ID: 15267829 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]