These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 39234980)
1. Testing food web theory in a large lake: The role of body size in habitat coupling in Lake Michigan. Maitland BM; Bootsma HA; Bronte CR; Bunnell DB; Feiner ZS; Fenske KH; Fetzer WW; Foley CJ; Gerig BS; Happel A; Höök TO; Keppeler FW; Kornis MS; Lepak RF; McNaught AS; Roth BM; Turschak BA; Hoffman JC; Jensen OP Ecology; 2024 Oct; 105(10):e4413. PubMed ID: 39234980 [TBL] [Abstract][Full Text] [Related]
2. Nearshore energy subsidies support Lake Michigan fishes and invertebrates following major changes in food web structure. Turschak BA; Bunnell D; Czesny S; Höök TO; Janssen J; Warner D; Bootsma HA Ecology; 2014 May; 95(5):1243-52. PubMed ID: 25000756 [TBL] [Abstract][Full Text] [Related]
3. Lake size and fish diversity determine resource use and trophic position of a top predator in high-latitude lakes. Eloranta AP; Kahilainen KK; Amundsen PA; Knudsen R; Harrod C; Jones RI Ecol Evol; 2015 Apr; 5(8):1664-75. PubMed ID: 25937909 [TBL] [Abstract][Full Text] [Related]
4. Species identity matters when interpreting trophic markers in aquatic food webs. Feiner ZS; Foley CJ; Bootsma HA; Czesny SJ; Janssen J; Rinchard J; Höök TO PLoS One; 2018; 13(10):e0204767. PubMed ID: 30289888 [TBL] [Abstract][Full Text] [Related]
5. Comparing nearshore benthic and pelagic prey as mercury sources to lake fish: the importance of prey quality and mercury content. Karimi R; Chen CY; Folt CL Sci Total Environ; 2016 Sep; 565():211-221. PubMed ID: 27173839 [TBL] [Abstract][Full Text] [Related]
6. Trophic Position of Consumers and Size Structure of Food Webs across Aquatic and Terrestrial Ecosystems. Potapov AM; Brose U; Scheu S; Tiunov AV Am Nat; 2019 Dec; 194(6):823-839. PubMed ID: 31738104 [TBL] [Abstract][Full Text] [Related]
7. Food webs in isolation: The food-web structure of a freshwater reservoir with armoured shores in a former coastal bay area. Tack LFJ; Vonk JA; van Riel MC; de Leeuw JJ; Koopman J; Maathuis MAM; Schilder K; van Hall RL; Huisman J; van der Geest HG Sci Total Environ; 2024 May; 925():171780. PubMed ID: 38499096 [TBL] [Abstract][Full Text] [Related]
8. Bottom-up and top-down effects of browning and warming on shallow lake food webs. Vasconcelos FR; Diehl S; Rodríguez P; Hedström P; Karlsson J; Byström P Glob Chang Biol; 2019 Feb; 25(2):504-521. PubMed ID: 30430702 [TBL] [Abstract][Full Text] [Related]
9. Broad shifts in the resource use of a commercially harvested fish following the invasion of dreissenid mussels. Fera SA; Rennie MD; Dunlop ES Ecology; 2017 Jun; 98(6):1681-1692. PubMed ID: 28369860 [TBL] [Abstract][Full Text] [Related]
10. Specialization of trophic position and habitat use by sticklebacks in an adaptive radiation. Matthews B; Marchinko KB; Bolnick DI; Mazumder A Ecology; 2010 Apr; 91(4):1025-34. PubMed ID: 20462117 [TBL] [Abstract][Full Text] [Related]
11. Biological invasions alter the structure of a tropical freshwater food web. Sharpe DMT; Valverde MP; De León LF; Hendry AP; Torchin ME Ecology; 2023 Dec; 104(12):e4173. PubMed ID: 37768609 [TBL] [Abstract][Full Text] [Related]
12. Blinded by the light? Nearshore energy pathway coupling and relative predator biomass increase with reduced water transparency across lakes. Tunney TD; McCann KS; Jarvis L; Lester NP; Shuter BJ Oecologia; 2018 Apr; 186(4):1031-1041. PubMed ID: 29388026 [TBL] [Abstract][Full Text] [Related]
13. Empirical correspondence between trophic transfer efficiency in freshwater food webs and the slope of their size spectra. Mehner T; Lischke B; Scharnweber K; Attermeyer K; Brothers S; Gaedke U; Hilt S; Brucet S Ecology; 2018 Jun; 99(6):1463-1472. PubMed ID: 29856494 [TBL] [Abstract][Full Text] [Related]
14. Food Web Topology in High Mountain Lakes. Sánchez-Hernández J; Cobo F; Amundsen PA PLoS One; 2015; 10(11):e0143016. PubMed ID: 26571235 [TBL] [Abstract][Full Text] [Related]
15. New parasites and predators follow the introduction of two fish species to a subarctic lake: implications for food-web structure and functioning. Amundsen PA; Lafferty KD; Knudsen R; Primicerio R; Kristoffersen R; Klemetsen A; Kuris AM Oecologia; 2013 Apr; 171(4):993-1002. PubMed ID: 23053223 [TBL] [Abstract][Full Text] [Related]
16. The influence of productivity and width of littoral zone on the trophic position of a large-bodied omnivore. Stenroth P; Holmqvist N; Nyström P; Berglund O; Larsson P; Granéli W Oecologia; 2008 Jun; 156(3):681-90. PubMed ID: 18368427 [TBL] [Abstract][Full Text] [Related]
17. Trophodynamics of Organic Pollutants in Pelagic and Benthic Food Webs of Lake Dianchi: Importance of Ingested Sediment As Uptake Route. Fan S; Wang B; Liu H; Gao S; Li T; Wang S; Liu Y; Liu X; Wan Y Environ Sci Technol; 2017 Dec; 51(24):14135-14143. PubMed ID: 29161512 [TBL] [Abstract][Full Text] [Related]
18. Pelagic energy flow supports the food web of a shallow lake following a dramatic regime shift driven by water level changes. Mao Z; Gu X; Cao Y; Luo J; Zeng Q; Chen H; Jeppesen E Sci Total Environ; 2021 Feb; 756():143642. PubMed ID: 33302070 [TBL] [Abstract][Full Text] [Related]
20. Food web differences between two neighboring tropical high mountain lakes and the influence of introducing a new top predator. Jiménez-Seinos JL; Alcocer J; Planas D PLoS One; 2023; 18(6):e0287066. PubMed ID: 37310987 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]