These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 39235397)
1. Long-Term Rate of Optic Disc Rim Loss in Glaucoma Patients Measured From Optic Disc Photographs With a Deep Neural Network. Jin SW; Bouris E; Morales E; Caprioli J Transl Vis Sci Technol; 2024 Sep; 13(9):9. PubMed ID: 39235397 [TBL] [Abstract][Full Text] [Related]
2. Prediction of visual field progression with serial optic disc photographs using deep learning. Mohammadzadeh V; Wu S; Davis T; Vepa A; Morales E; Besharati S; Edalati K; Martinyan J; Rafiee M; Martynian A; Scalzo F; Caprioli J; Nouri-Mahdavi K Br J Ophthalmol; 2024 Jul; 108(8):1107-1113. PubMed ID: 37833037 [TBL] [Abstract][Full Text] [Related]
3. The disc damage likelihood scale: Diagnostic accuracy and correlations with cup-to-disc ratio, structural tests and standard automated perimetry. Kara-José AC; Melo LAS; Esporcatte BLB; Endo ATNH; Leite MT; Tavares IM PLoS One; 2017; 12(7):e0181428. PubMed ID: 28727836 [TBL] [Abstract][Full Text] [Related]
4. Detection of Progressive Glaucomatous Optic Nerve Damage on Fundus Photographs with Deep Learning. Medeiros FA; Jammal AA; Mariottoni EB Ophthalmology; 2021 Mar; 128(3):383-392. PubMed ID: 32735906 [TBL] [Abstract][Full Text] [Related]
5. Estimation of the Disc Damage Likelihood Scale in primary open-angle glaucoma: the Glaucoma Stereo Analysis Study. Kitaoka Y; Tanito M; Yokoyama Y; Nitta K; Katai M; Omodaka K; Nakazawa T Graefes Arch Clin Exp Ophthalmol; 2016 Mar; 254(3):523-8. PubMed ID: 26666233 [TBL] [Abstract][Full Text] [Related]
6. Prediction of Visual Field Progression with Baseline and Longitudinal Structural Measurements Using Deep Learning. Mohammadzadeh V; Wu S; Besharati S; Davis T; Vepa A; Morales E; Edalati K; Rafiee M; Martinyan A; Zhang D; Scalzo F; Caprioli J; Nouri-Mahdavi K Am J Ophthalmol; 2024 Jun; 262():141-152. PubMed ID: 38354971 [TBL] [Abstract][Full Text] [Related]
7. Optic disc progression and rates of visual field change in treated glaucoma. De Moraes CG; Liebmann JM; Park SC; Teng CC; Nemiroff J; Tello C; Ritch R Acta Ophthalmol; 2013 Mar; 91(2):e86-91. PubMed ID: 23356423 [TBL] [Abstract][Full Text] [Related]
8. Regional correlation of structure and function in glaucoma, using the Disc Damage Likelihood Scale, Heidelberg Retina Tomograph, and visual fields. Danesh-Meyer HV; Ku JY; Papchenko TL; Jayasundera T; Hsiang JC; Gamble GD Ophthalmology; 2006 Apr; 113(4):603-11. PubMed ID: 16483660 [TBL] [Abstract][Full Text] [Related]
9. A Deep Learning Algorithm to Quantify Neuroretinal Rim Loss From Optic Disc Photographs. Thompson AC; Jammal AA; Medeiros FA Am J Ophthalmol; 2019 May; 201():9-18. PubMed ID: 30689990 [TBL] [Abstract][Full Text] [Related]
10. Detection of glaucoma progression by perimetry and optic disc photography at different stages of the disease: results from the Early Manifest Glaucoma Trial. Öhnell H; Heijl A; Anderson H; Bengtsson B Acta Ophthalmol; 2017 May; 95(3):281-287. PubMed ID: 27778463 [TBL] [Abstract][Full Text] [Related]
11. From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs. Medeiros FA; Jammal AA; Thompson AC Ophthalmology; 2019 Apr; 126(4):513-521. PubMed ID: 30578810 [TBL] [Abstract][Full Text] [Related]
12. Evaluating a new disc staging scale for glaucomatous damage: the ability to detect change over time. Henderer J; Wang Y; Bayer A; Altangerel U; Schwartz L; Schmidt C Eur J Ophthalmol; 2009; 19(3):404-10. PubMed ID: 19396786 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Nonmydriatic Hand-held Optic Disc Photography Grading in the Philadelphia Glaucoma Detection and Treatment Project. Waisbourd M; Bond EA; Sullivan T; Hu WD; Shah SB; Molineaux J; Sembhi H; Spaeth GL; Myers JS; Hark LA; Katz LJ J Glaucoma; 2016 May; 25(5):e520-5. PubMed ID: 26900823 [TBL] [Abstract][Full Text] [Related]
14. Optic disc imaging in perimetrically normal eyes of glaucoma patients with unilateral field loss. Caprioli J; Nouri-Mahdavi K; Law SK; Badalà F Trans Am Ophthalmol Soc; 2006; 104():202-11. PubMed ID: 17471341 [TBL] [Abstract][Full Text] [Related]
15. DDLSNet: A Novel Deep Learning-Based System for Grading Funduscopic Images for Glaucomatous Damage. Rasheed HA; Davis T; Morales E; Fei Z; Grassi L; De Gainza A; Nouri-Mahdavi K; Caprioli J Ophthalmol Sci; 2023 Jun; 3(2):100255. PubMed ID: 36619716 [TBL] [Abstract][Full Text] [Related]
16. Disc-damage Likelihood Scale (DDLS) as a Clinical Indicator of the Presence of a Relative Afferent Pupillary Defect (RAPD). Zhang AY; Lu L; Ali M; Rutnin N; Faria BM; Guzel H; Liang L; Martinez P; Tawfik M; Spaeth GL J Glaucoma; 2016 Oct; 25(10):e910-e916. PubMed ID: 27136083 [TBL] [Abstract][Full Text] [Related]
17. Glaucoma follow-up by the Heidelberg retina tomograph--new graphical analysis of optic disc topography changes. Kalaboukhova L; Fridhammar V; Lindblom B Graefes Arch Clin Exp Ophthalmol; 2006 Jun; 244(6):654-62. PubMed ID: 16220279 [TBL] [Abstract][Full Text] [Related]
18. The disc damage likelihood scale: reproducibility of a new method of estimating the amount of optic nerve damage caused by glaucoma. Spaeth GL; Henderer J; Liu C; Kesen M; Altangerel U; Bayer A; Katz LJ; Myers J; Rhee D; Steinmann W Trans Am Ophthalmol Soc; 2002; 100():181-5; discussion 185-6. PubMed ID: 12545692 [TBL] [Abstract][Full Text] [Related]
19. Correlation between disc damage likelihood scale and optical coherence tomography in the diagnosis of glaucoma. Abdul Majid AS; Kwag JH; Jung SH; Yim HB; Kim YD; Kang KD Ophthalmologica; 2010; 224(5):274-82. PubMed ID: 20185941 [TBL] [Abstract][Full Text] [Related]
20. Detection of psychophysical and structural injury in eyes with glaucomatous optic neuropathy and normal standard automated perimetry. Bagga H; Feuer WJ; Greenfield DS Arch Ophthalmol; 2006 Feb; 124(2):169-76. PubMed ID: 16476885 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]