These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 39235758)
1. Solar water splitting for hydrogen production using Zn electrodes: a green and sustainable approach. Singh D; Singh I; Arya RK; Mishra V; Singh D; Alam S; Giri BS Environ Sci Pollut Res Int; 2024 Sep; ():. PubMed ID: 39235758 [TBL] [Abstract][Full Text] [Related]
2. Decoupled Water Electrolysis Driven by 1 cm Lv F; Qin Z; Wu J; Pan L; Liu L; Chen Y; Zhao Y ChemSusChem; 2023 Jan; 16(1):e202201689. PubMed ID: 36279197 [TBL] [Abstract][Full Text] [Related]
3. Solar Water Splitting Using Earth-Abundant Electrocatalysts Driven by High-Efficiency Perovskite Solar Cells. Asiri AM; Ren D; Zhang H; Bahadar Khan S; Alamry KA; Marwani HM; Sherjeel Javed Khan M; Adeosun WA; Zakeeruddin SM; Grätzel M ChemSusChem; 2022 Feb; 15(4):e202102471. PubMed ID: 34962096 [TBL] [Abstract][Full Text] [Related]
4. A review of water electrolysis-based systems for hydrogen production using hybrid/solar/wind energy systems. Nasser M; Megahed TF; Ookawara S; Hassan H Environ Sci Pollut Res Int; 2022 Dec; 29(58):86994-87018. PubMed ID: 36280638 [TBL] [Abstract][Full Text] [Related]
5. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30. Jia J; Seitz LC; Benck JD; Huo Y; Chen Y; Ng JW; Bilir T; Harris JS; Jaramillo TF Nat Commun; 2016 Oct; 7():13237. PubMed ID: 27796309 [TBL] [Abstract][Full Text] [Related]
6. Water Splitting: From Electrode to Green Energy System. Li X; Zhao L; Yu J; Liu X; Zhang X; Liu H; Zhou W Nanomicro Lett; 2020 Jun; 12(1):131. PubMed ID: 34138146 [TBL] [Abstract][Full Text] [Related]
7. Solar-Powered AEM Electrolyzer via PGM-Free (Oxy)hydroxide Anode with Solar to Hydrogen Conversion Efficiency of 12.44. Ha JS; Park Y; Jeong JY; Lee SH; Lee SJ; Kim IT; Park SH; Jin H; Kim SM; Choi S; Kim C; Choi SM; Kang BK; Lee HM; Park YS Adv Sci (Weinh); 2024 Jul; 11(25):e2401782. PubMed ID: 38654698 [TBL] [Abstract][Full Text] [Related]
8. Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge. Kim JH; Hansora D; Sharma P; Jang JW; Lee JS Chem Soc Rev; 2019 Apr; 48(7):1908-1971. PubMed ID: 30855624 [TBL] [Abstract][Full Text] [Related]
9. Cable-Car Electrocatalysis to Drive Fully Decoupled Water Splitting. Long Y; Yang C; Wu Y; Deng B; Li Z; Hussain N; Wang K; Wang R; He X; Du P; Guo Z; Lang J; Huang K; Wu H Adv Sci (Weinh); 2023 Sep; 10(26):e2301872. PubMed ID: 37395639 [TBL] [Abstract][Full Text] [Related]
10. Recent Progress in Energy-Driven Water Splitting. Tee SY; Win KY; Teo WS; Koh LD; Liu S; Teng CP; Han MY Adv Sci (Weinh); 2017 May; 4(5):1600337. PubMed ID: 28546906 [TBL] [Abstract][Full Text] [Related]
12. Alkaline Water Electrolysis for Green Hydrogen Production. Tüysüz H Acc Chem Res; 2024 Feb; 57(4):558-67. PubMed ID: 38335244 [TBL] [Abstract][Full Text] [Related]
13. A comparative study based on performance and techno-economic analysis of different strategies for PV-Electrolyzer (green) hydrogen fueling incinerator system. Majeed Butt O; Shakeel Ahmad M; Kai Lun T; Seng Che H; Fayaz H; Abd Rahim N; Koziol KKK; Radwan N; Amir Khan M; Khan NA; Singh L Waste Manag; 2023 Feb; 156():1-11. PubMed ID: 36424243 [TBL] [Abstract][Full Text] [Related]
14. An Integrated Device View on Photo-Electrochemical Solar-Hydrogen Generation. Modestino MA; Haussener S Annu Rev Chem Biomol Eng; 2015; 6():13-34. PubMed ID: 26083057 [TBL] [Abstract][Full Text] [Related]
15. Toward more sustainable photovoltaic solar electrochemical oxidation treatments: Influence of hydraulic and electrical distribution. Millán M; García-Orozco VM; Lobato J; Fernández-Marchante CM; Roa-Morales G; Linares-Hernández I; Natividad R; Rodrigo MA J Environ Manage; 2021 May; 285():112064. PubMed ID: 33588169 [TBL] [Abstract][Full Text] [Related]
16. Cost-Efficient Photovoltaic-Water Electrolysis over Ultrathin Nanosheets of Cobalt/Iron-Molybdenum Oxides for Potential Large-Scale Hydrogen Production. Yi X; Song L; Ouyang S; Wang N; Chen H; Wang J; Lv J; Ye J Small; 2021 Oct; 17(39):e2102222. PubMed ID: 34411433 [TBL] [Abstract][Full Text] [Related]
17. NiMoV and NiO-based catalysts for efficient solar-driven water splitting using thermally integrated photovoltaics in a scalable approach. Pehlivan İB; Oscarsson J; Qiu Z; Stolt L; Edoff M; Edvinsson T iScience; 2021 Jan; 24(1):101910. PubMed ID: 33376975 [TBL] [Abstract][Full Text] [Related]
18. Decoupling Hydrogen and Oxygen Production in Acidic Water Electrolysis Using a Polytriphenylamine-Based Battery Electrode. Ma Y; Dong X; Wang Y; Xia Y Angew Chem Int Ed Engl; 2018 Mar; 57(11):2904-2908. PubMed ID: 29384260 [TBL] [Abstract][Full Text] [Related]
19. Sixteen Percent Solar-to-Hydrogen Efficiency Using a Power-Matched Alkaline Electrolyzer and a High Concentrated Solar Cell: Effect of Operating Parameters. M Bashir S; Nadeem MA; Al-Oufi M; Al-Hakami M; Isimjan TT; Idriss H ACS Omega; 2020 May; 5(18):10510-10518. PubMed ID: 32426608 [TBL] [Abstract][Full Text] [Related]
20. Feasibility analysis of green hydrogen production from oceanic energy. Pérez-Vigueras M; Sotelo-Boyás R; González-Huerta RG; Bañuelos-Ruedas F Heliyon; 2023 Sep; 9(9):e20046. PubMed ID: 37810096 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]