These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 39236070)
21. Free-Standing Covalent Organic Framework Membrane for High-Efficiency Salinity Gradient Energy Conversion. Hou S; Ji W; Chen J; Teng Y; Wen L; Jiang L Angew Chem Int Ed Engl; 2021 Apr; 60(18):9925-9930. PubMed ID: 33527640 [TBL] [Abstract][Full Text] [Related]
22. Enhanced osmotic energy conversion through bacterial cellulose based double-network hydrogel with 3D interconnected nanochannels. Sun Z; Kuang Y; Ahmad M; Huang Y; Yin S; Seidi F; Wang S Carbohydr Polym; 2023 Apr; 305():120556. PubMed ID: 36737202 [TBL] [Abstract][Full Text] [Related]
23. Ultrathin and Ion-Selective Janus Membranes for High-Performance Osmotic Energy Conversion. Zhang Z; Sui X; Li P; Xie G; Kong XY; Xiao K; Gao L; Wen L; Jiang L J Am Chem Soc; 2017 Jul; 139(26):8905-8914. PubMed ID: 28602079 [TBL] [Abstract][Full Text] [Related]
24. Bio-Inspired Salinity-Gradient Power Generation With UiO-66-NH Yao L; Li Q; Pan S; Cheng J; Liu X Front Bioeng Biotechnol; 2022; 10():901507. PubMed ID: 35528210 [TBL] [Abstract][Full Text] [Related]
25. Janus Metal-Organic Framework Membranes Boosting the Osmotic Energy Harvesting. Li ZQ; Zhu GL; Mo RJ; Wu MY; Ding XL; Huang LQ; Wu ZQ; Xia XH ACS Appl Mater Interfaces; 2023 May; 15(19):23922-23930. PubMed ID: 37145874 [TBL] [Abstract][Full Text] [Related]
26. Enhanced Selective Ion Transport in Highly Charged Bacterial Cellulose/Boron Nitride Composite Membranes for Thermo-Osmotic Energy Harvesting. Jia X; Zhang M; Zhang Y; Fu Y; Sheng N; Chen S; Wang H; Du Y Nano Lett; 2024 Feb; 24(7):2218-2225. PubMed ID: 38277614 [TBL] [Abstract][Full Text] [Related]
27. Unipolar Ionic Diode Nanofluidic Membranes Enabled by Stepped Mesochannels for Enhanced Salinity Gradient Energy Harvesting. Yang Y; Zhou S; Lv Z; Hung CT; Zhao Z; Zhao T; Chao D; Kong B; Zhao D J Am Chem Soc; 2024 Jul; 146(28):19580-19589. PubMed ID: 38977375 [TBL] [Abstract][Full Text] [Related]
29. Meta-Aerogel Ion Motor for Nanofluid Osmotic Energy Harvesting. Zhang F; Yu J; Si Y; Ding B Adv Mater; 2023 Sep; 35(38):e2302511. PubMed ID: 37295070 [TBL] [Abstract][Full Text] [Related]
30. Bioinspired Ti Ding L; Zheng M; Xiao D; Zhao Z; Xue J; Zhang S; Caro J; Wang H Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202206152. PubMed ID: 35768337 [TBL] [Abstract][Full Text] [Related]
31. Improved Ion Transport and High Energy Conversion through Hydrogel Membrane with 3D Interconnected Nanopores. Chen W; Wang Q; Chen J; Zhang Q; Zhao X; Qian Y; Zhu C; Yang L; Zhao Y; Kong XY; Lu B; Jiang L; Wen L Nano Lett; 2020 Aug; 20(8):5705-5713. PubMed ID: 32692569 [TBL] [Abstract][Full Text] [Related]
32. Interfacial Super-Assembly of Intertwined Nanofibers toward Hybrid Nanochannels for Synergistic Salinity Gradient Power Conversion. Awati A; Zhou S; Shi T; Zeng J; Yang R; He Y; Zhang X; Zeng H; Zhu D; Cao T; Xie L; Liu M; Kong B ACS Appl Mater Interfaces; 2023 Jun; 15(22):27075-27088. PubMed ID: 37235387 [TBL] [Abstract][Full Text] [Related]
33. Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels. Wang J; Cui Z; Li S; Song Z; He M; Huang D; Feng Y; Liu Y; Zhou K; Wang X; Wang L Nat Commun; 2024 Jan; 15(1):608. PubMed ID: 38242879 [TBL] [Abstract][Full Text] [Related]
34. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation. Jia P; Du X; Chen R; Zhou J; Agostini M; Sun J; Xiao L Molecules; 2021 Sep; 26(17):. PubMed ID: 34500776 [TBL] [Abstract][Full Text] [Related]
35. Two-Dimensional Membranes with Highly Charged Nanochannels for Osmotic Energy Conversion. Qian Y; Liu D; Yang G; Chen J; Ma Y; Wang L; Wang X; Lei W ChemSusChem; 2022 Oct; 15(19):e202200933. PubMed ID: 35853838 [TBL] [Abstract][Full Text] [Related]
36. Ultrathin H-MXM as An "Ion Freeway" for High-Performance Osmotic Energy Conversion. Dong Q; Liu J; Wang Y; He J; Zhai J; Fan X Small Methods; 2024 Oct; 8(10):e2301558. PubMed ID: 38308417 [TBL] [Abstract][Full Text] [Related]
37. Improved osmotic energy conversion in heterogeneous membrane boosted by three-dimensional hydrogel interface. Zhang Z; He L; Zhu C; Qian Y; Wen L; Jiang L Nat Commun; 2020 Feb; 11(1):875. PubMed ID: 32054863 [TBL] [Abstract][Full Text] [Related]
38. Anti-Swelling Gradient Polyelectrolyte Hydrogel Membranes as High-Performance Osmotic Energy Generators. Bian G; Pan N; Luan Z; Sui X; Fan W; Xia Y; Sui K; Jiang L Angew Chem Int Ed Engl; 2021 Sep; 60(37):20294-20300. PubMed ID: 34265152 [TBL] [Abstract][Full Text] [Related]
39. Two-Dimensional Nanofluidic Membranes with Intercalated In-Plane Shortcuts for High-Performance Blue Energy Harvesting. Yan PP; Chen XC; Liang ZX; Fang YP; Yao J; Lu CX; Cai Y; Jiang L Small; 2023 Jan; 19(4):e2205003. PubMed ID: 36424182 [TBL] [Abstract][Full Text] [Related]
40. Biomimetic Nanocomposite Membranes with Ultrahigh Ion Selectivity for Osmotic Power Conversion. Chen J; Xin W; Chen W; Zhao X; Qian Y; Kong XY; Jiang L; Wen L ACS Cent Sci; 2021 Sep; 7(9):1486-1492. PubMed ID: 34584949 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]