These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 39236070)
41. Polyoxometalate-based plasmonic electron sponge membrane for nanofluidic osmotic energy conversion. Zhu C; Xu L; Liu Y; Liu J; Wang J; Sun H; Lan YQ; Wang C Nat Commun; 2024 May; 15(1):4213. PubMed ID: 38760369 [TBL] [Abstract][Full Text] [Related]
42. High-Performance Osmotic Power Generators Based on the 1D/2D Hybrid Nanochannel System. Dong Y; Zhao Z; Zhao J; Guo Z; Du G; Sun Y; He D; Duan J; Liu J; Yao H ACS Appl Mater Interfaces; 2022 Jun; 14(25):29197-29212. PubMed ID: 35704847 [TBL] [Abstract][Full Text] [Related]
43. Two-Dimensional Ti Hong S; Ming F; Shi Y; Li R; Kim IS; Tang CY; Alshareef HN; Wang P ACS Nano; 2019 Aug; 13(8):8917-8925. PubMed ID: 31305989 [TBL] [Abstract][Full Text] [Related]
44. Gap Confinement Effect of a Tandem Nanochannel System and Its Application in Salinity Gradient Power Generation. Wang Y; Chen H; Zhai J ACS Appl Mater Interfaces; 2021 Sep; 13(34):41159-41168. PubMed ID: 34403239 [TBL] [Abstract][Full Text] [Related]
45. Light-responsive and ultrapermeable two-dimensional metal-organic framework membrane for efficient ionic energy harvesting. Wang J; Song Z; He M; Qian Y; Wang D; Cui Z; Feng Y; Li S; Huang B; Kong X; Han J; Wang L Nat Commun; 2024 Mar; 15(1):2125. PubMed ID: 38459037 [TBL] [Abstract][Full Text] [Related]
46. Optimizing Nanofluidic Energy Harvesting in Synthetic Clay-based Membranes by Annealing Treatment. Zavala-Galindo Y; Yang G; Zang H; Lei W; Liu D Adv Sci (Weinh); 2024 Aug; 11(31):e2400233. PubMed ID: 38885420 [TBL] [Abstract][Full Text] [Related]
47. Porous Ti Hong S; El-Demellawi JK; Lei Y; Liu Z; Marzooqi FA; Arafat HA; Alshareef HN ACS Nano; 2022 Jan; 16(1):792-800. PubMed ID: 35000386 [TBL] [Abstract][Full Text] [Related]
48. Sandwich "Ion Pool"-Structured Power Gating for Salinity Gradient Generation Devices. Fu L; Wang Y; Jiang J; Lu B; Zhai J ACS Appl Mater Interfaces; 2021 Jul; 13(29):35197-35206. PubMed ID: 34266231 [TBL] [Abstract][Full Text] [Related]
49. Bacterial nanocellulose membrane with opposite surface charges for large-scale and large-area osmotic energy harvesting and ion transport. Zhang K; Wu H; Zhang X; Dong H; Chen S; Xu Y; Xu F Int J Biol Macromol; 2024 Mar; 260(Pt 1):129461. PubMed ID: 38237827 [TBL] [Abstract][Full Text] [Related]
50. Engineered cellulose nanofibers membranes with oppositely charge characteristics for high-performance salinity gradient power generation by reverse electrodialysis. Wang S; Sun Z; Ahmad M; Fu W; Gao Z Int J Biol Macromol; 2023 Dec; 253(Pt 1):126608. PubMed ID: 37652325 [TBL] [Abstract][Full Text] [Related]
51. Tunable Surface Charge of Layered Double Hydroxide Membranes Enabling Osmotic Energy Harvesting from Anion Transport. Qin S; Yang G; Wang S; Ma Y; Wang Z; Wang L; Liu D; Lei W Small; 2024 Aug; 20(34):e2400850. PubMed ID: 38616735 [TBL] [Abstract][Full Text] [Related]
52. Interfacial Super-Assembly of Ordered Mesoporous Silica-Alumina Heterostructure Membranes with pH-Sensitive Properties for Osmotic Energy Harvesting. Zhou S; Xie L; Zhang L; Wen L; Tang J; Zeng J; Liu T; Peng D; Yan M; Qiu B; Liang Q; Liang K; Jiang L; Kong B ACS Appl Mater Interfaces; 2021 Feb; 13(7):8782-8793. PubMed ID: 33560109 [TBL] [Abstract][Full Text] [Related]
53. Preanchoring Enabled Directional Modification of Atomically Thin Membrane for High-Performance Osmotic Energy Generation. Liu Y; Zhang S; Song R; Zeng H; Wang L Nano Lett; 2024 Jan; 24(1):26-34. PubMed ID: 38117701 [TBL] [Abstract][Full Text] [Related]
54. Horizontal Transport in Ti Qian H; Peng P; Fan H; Yang Z; Yang L; Zhou Y; Tan D; Yang F; Willatzen M; Amaratunga G; Wang Z; Wei D Angew Chem Int Ed Engl; 2024 Nov; 63(48):e202414984. PubMed ID: 39147723 [TBL] [Abstract][Full Text] [Related]
55. Vacancy Engineering for High-Efficiency Nanofluidic Osmotic Energy Generation. Safaei J; Gao Y; Hosseinpour M; Zhang X; Sun Y; Tang X; Zhang Z; Wang S; Guo X; Wang Y; Chen Z; Zhou D; Kang F; Jiang L; Wang G J Am Chem Soc; 2023 Feb; 145(4):2669-2678. PubMed ID: 36651291 [TBL] [Abstract][Full Text] [Related]
56. Large-Scale, Vertically Aligned 2D Subnanochannel Arrays by a Smectic Liquid Crystal Network for High-Performance Osmotic Energy Conversion. Liu J; Li C; Jia P; Hao J; Gao L; Wang J; Jiang L Adv Mater; 2024 Jun; 36(25):e2313695. PubMed ID: 38452281 [TBL] [Abstract][Full Text] [Related]
57. Optimizing Membranes for Osmotic Power Generation. Chu CW; Fauziah AR; Yeh LH Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303582. PubMed ID: 37010943 [TBL] [Abstract][Full Text] [Related]
58. Unraveling the Anomalous Surface-Charge-Dependent Osmotic Power Using a Single Funnel-Shaped Nanochannel. Hsu JP; Su TC; Peng PH; Hsu SC; Zheng MJ; Yeh LH ACS Nano; 2019 Nov; 13(11):13374-13381. PubMed ID: 31639293 [TBL] [Abstract][Full Text] [Related]
59. Enhancing the efficiency of energy harvesting from salt gradient with ion-selective nanochannel. Zhang Y; Huang Z; He Y; Miao X Nanotechnology; 2019 Jul; 30(29):295402. PubMed ID: 30861495 [TBL] [Abstract][Full Text] [Related]
60. Nano-Confined Effect and Heterojunction Promoted Exciton Separation for Light-Boosted Osmotic Energy Conversion. Geng Y; Zhang L; Li M; He Y; Lu B; He J; Li X; Zhou H; Fan X; Xiao T; Zhai J Small; 2024 Jul; 20(28):e2309128. PubMed ID: 38308414 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]