These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 39236232)

  • 1. Mechanical confinement prevents ectopic platelet release.
    Guinard I; Brassard-Jollive N; Ruch L; Weber J; Eckly A; Boscher J; Léon C
    Proc Natl Acad Sci U S A; 2024 Sep; 121(38):e2407829121. PubMed ID: 39236232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin inhibition increases megakaryocyte proplatelet formation through an apoptosis-dependent mechanism.
    Avanzi MP; Izak M; Oluwadara OE; Mitchell WB
    PLoS One; 2015; 10(4):e0125057. PubMed ID: 25875470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Actin reorganization and proplatelet formation in murine megakaryocytes: the role of protein kinase calpha.
    Rojnuckarin P; Kaushansky K
    Blood; 2001 Jan; 97(1):154-61. PubMed ID: 11133755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes.
    Italiano JE; Lecine P; Shivdasani RA; Hartwig JH
    J Cell Biol; 1999 Dec; 147(6):1299-312. PubMed ID: 10601342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serotonin enhances megakaryopoiesis and proplatelet formation via p-Erk1/2 and F-actin reorganization.
    Ye JY; Liang EY; Cheng YS; Chan GC; Ding Y; Meng F; Ng MH; Chong BH; Lian Q; Yang M
    Stem Cells; 2014 Nov; 32(11):2973-82. PubMed ID: 24980849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of environmental stiffness for megakaryocyte differentiation and proplatelet formation.
    Aguilar A; Pertuy F; Eckly A; Strassel C; Collin D; Gachet C; Lanza F; Léon C
    Blood; 2016 Oct; 128(16):2022-2032. PubMed ID: 27503502
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proplatelet formation is regulated by the Rho/ROCK pathway.
    Chang Y; Auradé F; Larbret F; Zhang Y; Le Couedic JP; Momeux L; Larghero J; Bertoglio J; Louache F; Cramer E; Vainchenker W; Debili N
    Blood; 2007 May; 109(10):4229-36. PubMed ID: 17244674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myosin IIA is critical for organelle distribution and F-actin organization in megakaryocytes and platelets.
    Pertuy F; Eckly A; Weber J; Proamer F; Rinckel JY; Lanza F; Gachet C; Léon C
    Blood; 2014 Feb; 123(8):1261-9. PubMed ID: 24243973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Matrix stiffness controls megakaryocyte adhesion, fibronectin fibrillogenesis, and proplatelet formation through Itgβ3.
    Guinard I; Nguyen T; Brassard-Jollive N; Weber J; Ruch L; Reininger L; Brouard N; Eckly A; Collin D; Lanza F; Léon C
    Blood Adv; 2023 Aug; 7(15):4003-4018. PubMed ID: 37171626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic actin/septin network in megakaryocytes coordinates proplatelet elaboration.
    Becker IC; Wilkie AR; Unger BA; Sciaudone AR; Fatima F; Tsai IT; Xu K; Machlus KR; Italiano JE
    Haematologica; 2024 Mar; 109(3):915-928. PubMed ID: 37675512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defective tubulin organization and proplatelet formation in murine megakaryocytes lacking Rac1 and Cdc42.
    Pleines I; Dütting S; Cherpokova D; Eckly A; Meyer I; Morowski M; Krohne G; Schulze H; Gachet C; Debili N; Brakebusch C; Nieswandt B
    Blood; 2013 Oct; 122(18):3178-87. PubMed ID: 23861250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulation of actin stress fiber assembly and proplatelet formation by alpha2beta1 integrin and GPVI in human megakaryocytes.
    Sabri S; Jandrot-Perrus M; Bertoglio J; Farndale RW; Mas VM; Debili N; Vainchenker W
    Blood; 2004 Nov; 104(10):3117-25. PubMed ID: 15265786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of actin polymerization by tropomodulin-3 controls megakaryocyte actin organization and platelet biogenesis.
    Sui Z; Nowak RB; Sanada C; Halene S; Krause DS; Fowler VM
    Blood; 2015 Jul; 126(4):520-30. PubMed ID: 25964668
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic impaired proplatelet formation and microtubule coil assembly of megakaryocytes in a mouse model of Bernard-Soulier syndrome.
    Strassel C; Eckly A; Léon C; Petitjean C; Freund M; Cazenave JP; Gachet C; Lanza F
    Haematologica; 2009 Jun; 94(6):800-10. PubMed ID: 19377075
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deletion of Grin1 in mouse megakaryocytes reveals NMDA receptor role in platelet function and proplatelet formation.
    Hearn JI; Green TN; Hisey CL; Bender M; Josefsson EC; Knowlton N; Baumann J; Poulsen RC; Bohlander SK; Kalev-Zylinska ML
    Blood; 2022 Apr; 139(17):2673-2690. PubMed ID: 35245376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myosin-II inhibition and soft 2D matrix maximize multinucleation and cellular projections typical of platelet-producing megakaryocytes.
    Shin JW; Swift J; Spinler KR; Discher DE
    Proc Natl Acad Sci U S A; 2011 Jul; 108(28):11458-63. PubMed ID: 21709232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytoskeletal regulation of platelet formation: Coordination of F-actin and microtubules.
    Poulter NS; Thomas SG
    Int J Biochem Cell Biol; 2015 Sep; 66():69-74. PubMed ID: 26210823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and dephosphorylation of MARCKS in the late stages of megakaryocyte maturation drive proplatelet formation.
    Machlus KR; Wu SK; Stumpo DJ; Soussou TS; Paul DS; Campbell RA; Kalwa H; Michel T; Bergmeier W; Weyrich AS; Blackshear PJ; Hartwig JH; Italiano JE
    Blood; 2016 Mar; 127(11):1468-80. PubMed ID: 26744461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pivotal role of PDK1 in megakaryocyte cytoskeletal dynamics and polarization during platelet biogenesis.
    Geue S; Aurbach K; Manke MC; Manukjan G; Münzer P; Stegner D; Brähler C; Walker-Allgaier B; Märklin M; Borst CE; Quintanilla-Fend L; Rath D; Geisler T; Salih HR; Seizer P; Lang F; Nieswandt B; Gawaz M; Schulze H; Pleines I; Borst O
    Blood; 2019 Nov; 134(21):1847-1858. PubMed ID: 31578203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Rho-GTPases in megakaryopoiesis.
    Vainchenker W; Arkoun B; Basso-Valentina F; Lordier L; Debili N; Raslova H
    Small GTPases; 2021; 12(5-6):399-415. PubMed ID: 33570449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.