These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 39236240)

  • 21. Selective transformation of carbon dioxide into lower olefins with a bifunctional catalyst composed of ZnGa
    Liu X; Wang M; Zhou C; Zhou W; Cheng K; Kang J; Zhang Q; Deng W; Wang Y
    Chem Commun (Camb); 2018 Jan; 54(2):140-143. PubMed ID: 29210376
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electroplating sludge-derived metal and sulfur co-doping catalyst and its application in methanol production by CO
    Hou H; Xu S; Ding S; Lin W; Yu Q; Zhang J; Qian G
    Sci Total Environ; 2022 Sep; 838(Pt 2):156032. PubMed ID: 35597356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon-Supported Fe-Based Catalyst for Thermal-Catalytic CO
    Chen Y; Jiang L; Lin S; Dong P; Fu X; Wang Y; Liu Q; Wu M
    Molecules; 2024 Sep; 29(19):. PubMed ID: 39407558
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multifunctional Catalyst Combination for the Direct Conversion of CO
    Ramirez A; Ticali P; Salusso D; Cordero-Lanzac T; Ould-Chikh S; Ahoba-Sam C; Bugaev AL; Borfecchia E; Morandi S; Signorile M; Bordiga S; Gascon J; Olsbye U
    JACS Au; 2021 Oct; 1(10):1719-1732. PubMed ID: 34723275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CO
    Calizzi M; Mutschler R; Patelli N; Migliori A; Zhao K; Pasquini L; Züttel A
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32664610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reverse water gas shift reaction over a Cu/ZnO catalyst supported on regenerated spent bleaching earth (RSBE) in a slurry reactor: the effect of the Cu/Zn ratio on the catalytic activity.
    Phey Phey ML; Tuan Abdullah TA; Md Ali UF; Mohamud MY; Ikram M; Nabgan W
    RSC Adv; 2023 Jan; 13(5):3039-3055. PubMed ID: 36756434
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Unveiling the Activity Origin of Iron Nitride as Catalytic Material for Efficient Hydrogenation of CO
    Zhao B; Sun M; Chen F; Shi Y; Yu Y; Li X; Zhang B
    Angew Chem Int Ed Engl; 2021 Feb; 60(9):4496-4500. PubMed ID: 33206425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ni
    Bao S; Liu T; Fu H; Xu Z; Qu X; Zheng S; Zhu D
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):45949-45959. PubMed ID: 37748196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Research Progress of Catalysis for Low-Carbon Olefins Synthesis Through Hydrogenation of CO₂.
    Wang Q; Chen Y; Li Z
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3162-3172. PubMed ID: 30744739
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CO
    Bogdan TV; Koklin AE; Mishanin II; Chernavskii PA; Pankratov DA; Kim OA; Bogdan VI
    Chempluschem; 2024 Nov; 89(11):e202400327. PubMed ID: 39012805
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ambient-pressure hydrogenation of CO
    Li Z; Wu W; Wang M; Wang Y; Ma X; Luo L; Chen Y; Fan K; Pan Y; Li H; Zeng J
    Nat Commun; 2022 May; 13(1):2396. PubMed ID: 35504867
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Flame Synthesis of Cu/ZnO-CeO
    Zhu J; Ciolca D; Liu L; Parastaev A; Kosinov N; Hensen EJM
    ACS Catal; 2021 Apr; 11(8):4880-4892. PubMed ID: 33898079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of Zr loading into In
    Portillo A; Ateka A; Ereña J; Bilbao J; Aguayo AT
    J Environ Manage; 2022 Aug; 316():115329. PubMed ID: 35658264
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Breaking the Conversion-Selectivity Trade-Off in Methanol Synthesis from CO
    Sun Q; Liu X; Gu Q; Sun Z; Wang H; Cao L; Xu Y; Li S; Yang B; Wei S; Lu J
    J Am Chem Soc; 2024 Oct; 146(42):28885-28894. PubMed ID: 39283721
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tandem Catalysis for CO
    Xie C; Chen C; Yu Y; Su J; Li Y; Somorjai GA; Yang P
    Nano Lett; 2017 Jun; 17(6):3798-3802. PubMed ID: 28493720
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Facile Synthesis of Iron Carbide via Pyrolysis of Ferrous Fumarate for Catalytic CO
    Qi H; Si W; Xu Z; Wang G; Liu X; Lyu C; Huang B; Tsubaki N; Xing C; Sun J
    ChemSusChem; 2024 Aug; 17(16):e202400484. PubMed ID: 38472129
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning product selectivity in CO
    Wang LX; Wang L; Xiao FS
    Chem Sci; 2021 Nov; 12(44):14660-14673. PubMed ID: 34820082
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conditions for the Joint Conversion of CO
    Portillo A; Ateka A; Ereña J; Aguayo AT; Bilbao J
    Ind Eng Chem Res; 2022 Jul; 61(29):10365-10376. PubMed ID: 35915619
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CO
    Liang J; Liu J; Guo L; Wang W; Wang C; Gao W; Guo X; He Y; Yang G; Yasuda S; Liang B; Tsubaki N
    Nat Commun; 2024 Jan; 15(1):512. PubMed ID: 38218949
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Porous Graphene-Confined Fe-K as Highly Efficient Catalyst for CO
    Wu T; Lin J; Cheng Y; Tian J; Wang S; Xie S; Pei Y; Yan S; Qiao M; Xu H; Zong B
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23439-23443. PubMed ID: 29956535
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.