These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 39236245)
1. Structural and virologic mechanism of the emergence of resistance to M Hattori SI; Bulut H; Hayashi H; Kishimoto N; Takamune N; Hasegawa K; Furusawa Y; Yamayoshi S; Murayama K; Tamamura H; Li M; Wlodawer A; Kawaoka Y; Misumi S; Mitsuya H Proc Natl Acad Sci U S A; 2024 Sep; 121(37):e2404175121. PubMed ID: 39236245 [TBL] [Abstract][Full Text] [Related]
2. Glycyrrhizic acid conjugates with amino acid methyl esters target the main protease, exhibiting antiviral activity against wild-type and nirmatrelvir-resistant SARS-CoV-2 variants. Le UNP; Chang YJ; Lu CH; Chen Y; Su WC; Chao ST; Baltina LA; Petrova SF; Li SR; Hung MC; Lai MMC; Baltina LA; Lin CW Antiviral Res; 2024 Jul; 227():105920. PubMed ID: 38821317 [TBL] [Abstract][Full Text] [Related]
3. Molecular mechanisms of SARS-CoV-2 resistance to nirmatrelvir. Duan Y; Zhou H; Liu X; Iketani S; Lin M; Zhang X; Bian Q; Wang H; Sun H; Hong SJ; Culbertson B; Mohri H; Luck MI; Zhu Y; Liu X; Lu Y; Yang X; Yang K; Sabo Y; Chavez A; Goff SP; Rao Z; Ho DD; Yang H Nature; 2023 Oct; 622(7982):376-382. PubMed ID: 37696289 [TBL] [Abstract][Full Text] [Related]
4. A comprehensive study of SARS-CoV-2 main protease (Mpro) inhibitor-resistant mutants selected in a VSV-based system. Costacurta F; Dodaro A; Bante D; Schöppe H; Peng JY; Sprenger B; He X; Moghadasi SA; Egger LM; Fleischmann J; Pavan M; Bassani D; Menin S; Rauch S; Krismer L; Sauerwein A; Heberle A; Rabensteiner T; Ho J; Harris RS; Stefan E; Schneider R; Dunzendorfer-Matt T; Naschberger A; Wang D; Kaserer T; Moro S; von Laer D; Heilmann E PLoS Pathog; 2024 Sep; 20(9):e1012522. PubMed ID: 39259728 [TBL] [Abstract][Full Text] [Related]
5. Theoretical insights into the binding interaction of Nirmatrelvir with SARS-CoV-2 Mpro mutants (C145A and C145S): MD simulations and binding free-energy calculation to understand drug resistance. Purohit P; Panda M; Muya JT; Bandyopadhyay P; Meher BR J Biomol Struct Dyn; 2024 Oct; 42(17):8865-8884. PubMed ID: 37599474 [TBL] [Abstract][Full Text] [Related]
6. Recent Advances in SARS-CoV-2 Main Protease Inhibitors: From Nirmatrelvir to Future Perspectives. Citarella A; Dimasi A; Moi D; Passarella D; Scala A; Piperno A; Micale N Biomolecules; 2023 Sep; 13(9):. PubMed ID: 37759739 [TBL] [Abstract][Full Text] [Related]
7. Genetic Surveillance of SARS-CoV-2 M Lee JT; Yang Q; Gribenko A; Perrin BS; Zhu Y; Cardin R; Liberator PA; Anderson AS; Hao L mBio; 2022 Aug; 13(4):e0086922. PubMed ID: 35862764 [TBL] [Abstract][Full Text] [Related]
8. In Silico Comparative Analysis of Ivermectin and Nirmatrelvir Inhibitors Interacting with the SARS-CoV-2 Main Protease. de Oliveira Só YA; Bezerra KS; Gargano R; Mendonça FLL; Souto JT; Fulco UL; Pereira Junior ML; Junior LAR Biomolecules; 2024 Jun; 14(7):. PubMed ID: 39062468 [TBL] [Abstract][Full Text] [Related]
9. Exploring epigenetic drugs as potential inhibitors of SARS-CoV-2 main protease: a docking and MD simulation study. Uzuner U; Akkus E; Kocak A; Çelik Uzuner S J Biomol Struct Dyn; 2024 Aug; 42(13):6892-6903. PubMed ID: 37458994 [TBL] [Abstract][Full Text] [Related]
10. Computational Insights into SARS-CoV-2 Main Protease Mutations and Nirmatrelvir Efficacy: The Effects of P132H and P132H-A173V. Xia YL; Du WW; Li YP; Tao Y; Zhang ZB; Liu SM; Fu YX; Zhang KQ; Liu SQ J Chem Inf Model; 2024 Jul; 64(13):5207-5218. PubMed ID: 38913174 [TBL] [Abstract][Full Text] [Related]
12. In vitro selection and analysis of SARS-CoV-2 nirmatrelvir resistance mutations contributing to clinical virus resistance surveillance. Zhu Y; Yurgelonis I; Noell S; Yang Q; Guan S; Li Z; Hao L; Rothan H; Rai DK; McMonagle P; Baniecki ML; Greasley SE; Plotnikova O; Lee J; Nicki JA; Ferre R; Byrnes LJ; Liu W; Craig TK; Steppan CM; Liberator P; Soares HD; Allerton CMN; Anderson AS; Cardin RD Sci Adv; 2024 Jul; 10(30):eadl4013. PubMed ID: 39047088 [TBL] [Abstract][Full Text] [Related]
13. Structural basis for the in vitro efficacy of nirmatrelvir against SARS-CoV-2 variants. Greasley SE; Noell S; Plotnikova O; Ferre R; Liu W; Bolanos B; Fennell K; Nicki J; Craig T; Zhu Y; Stewart AE; Steppan CM J Biol Chem; 2022 Jun; 298(6):101972. PubMed ID: 35461811 [TBL] [Abstract][Full Text] [Related]
14. Pomotrelvir and Nirmatrelvir Binding and Reactivity with SARS-CoV-2 Main Protease: Implications for Resistance Mechanisms from Computations. Schillings J; Ramos-Guzmán CA; Ruiz-Pernía JJ; Tuñón I Angew Chem Int Ed Engl; 2024 Oct; 63(40):e202409527. PubMed ID: 38959351 [TBL] [Abstract][Full Text] [Related]
17. In vitro and in vivo characterization of SARS-CoV-2 strains resistant to nirmatrelvir. Kiso M; Furusawa Y; Uraki R; Imai M; Yamayoshi S; Kawaoka Y Nat Commun; 2023 Jul; 14(1):3952. PubMed ID: 37402789 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the Inhibition Potency of Nirmatrelvir against Main Protease Mutants of SARS-CoV-2 Variants. Jiang H; Zhou Y; Zou X; Hu X; Wang J; Zeng P; Li W; Zeng X; Zhang J; Li J Biochemistry; 2023 Jul; 62(13):2055-2064. PubMed ID: 37222536 [TBL] [Abstract][Full Text] [Related]
19. Adaptive Mutation in the Main Protease Cleavage Site of Feline Coronavirus Renders the Virus More Resistant to Main Protease Inhibitors. Jiao Z; Yan Y; Chen Y; Wang G; Wang X; Li L; Yang M; Hu X; Guo Y; Shi Y; Peng G J Virol; 2022 Sep; 96(17):e0090722. PubMed ID: 36000844 [TBL] [Abstract][Full Text] [Related]
20. Non-Toxic Dimeric Peptides Derived from the Bothropstoxin-I Are Potent SARS-CoV-2 and Papain-like Protease Inhibitors. Freire MCLC; Noske GD; Bitencourt NV; Sanches PRS; Santos-Filho NA; Gawriljuk VO; de Souza EP; Nogueira VHR; de Godoy MO; Nakamura AM; Fernandes RS; Godoy AS; Juliano MA; Peres BM; Barbosa CG; Moraes CB; Freitas-Junior LHG; Cilli EM; Guido RVC; Oliva G Molecules; 2021 Aug; 26(16):. PubMed ID: 34443484 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]