These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39236966)
1. Fabrication, digestion behavior and β-carotene bioaccessibility of emulsion-filled double-network gel: Effect of corn fiber gum/soy protein isolate ratio and surfactant types. Yan W; Hua X; Zhang M; Qu Y; Yin L; Li Y; Jia X Int J Biol Macromol; 2024 Nov; 279(Pt 3):135296. PubMed ID: 39236966 [TBL] [Abstract][Full Text] [Related]
2. Wheat bran arabinoxylan-soybean protein isolate emulsion-filled gels as a β-carotene delivery carrier: Effect of polysaccharide content on textural and rheological properties. Lv D; Chen F; Yin L; Zhang P; Rashid MT; Yu J Int J Biol Macromol; 2023 Dec; 253(Pt 1):126465. PubMed ID: 37619689 [TBL] [Abstract][Full Text] [Related]
3. Investigating the effects of oil type, emulsifier type, and emulsion particle size on textured fibril soy protein emulsion-filled gels and soybean protein isolate emulsion-filled gels. Luo B; Chen L; Peng J; Sun J J Texture Stud; 2024 Aug; 55(4):e12855. PubMed ID: 38992897 [TBL] [Abstract][Full Text] [Related]
4. Role of pectin in the delivery of β-carotene embedded in interpenetrating emulsion-filled gels made with soy protein isolate. Feng L; Jia X; Yin L Food Chem; 2024 Jul; 446():138797. PubMed ID: 38442678 [TBL] [Abstract][Full Text] [Related]
5. Development of β-carotene loaded oil-in-water emulsions using mixed biopolymer-particle-surfactant interfaces. Wei Y; Zhou D; Yang S; Dai L; Zhang L; Mao L; Gao Y; Mackie A Food Funct; 2021 Apr; 12(7):3246-3265. PubMed ID: 33877248 [TBL] [Abstract][Full Text] [Related]
6. Interactions of β-carotene with WPI/Tween 80 mixture and oil phase: Effect on the behavior of O/W emulsions during in vitro digestion. Gomes A; Costa ALR; Cardoso DD; Náthia-Neves G; Meireles MAA; Cunha RL Food Chem; 2021 Mar; 341(Pt 2):128155. PubMed ID: 33045587 [TBL] [Abstract][Full Text] [Related]
7. Fabrication and characterization of β-carotene emulsions stabilized by soy oleosin and lecithin mixtures with a composition mimicking natural soy oleosomes. Ding J; Dong Y; Huang G; Zhang Y; Jiang L; Sui X Food Funct; 2021 Nov; 12(21):10875-10886. PubMed ID: 34622257 [TBL] [Abstract][Full Text] [Related]
8. Factors impacting lipid digestion and nutraceutical bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): Emulsifier type. Tan Y; Zhang Z; Muriel Mundo J; McClements DJ Food Res Int; 2020 Nov; 137():109739. PubMed ID: 33233304 [TBL] [Abstract][Full Text] [Related]
9. Effect of interfacial composition and crumbliness on aroma release in soy protein/sugar beet pectin mixed emulsion gels. Hou JJ; Guo J; Wang JM; Yang XQ J Sci Food Agric; 2016 Oct; 96(13):4449-56. PubMed ID: 26841309 [TBL] [Abstract][Full Text] [Related]
10. Soy protein isolate-citrus pectin-gallic acid ternary composite high internal phase Pickering emulsion for delivery of β-carotene: Physicochemical, structural and digestive properties. Xu X; Li L; Ma C; Li D; Yang Y; Bian X; Fan J; Zhang N; Zuo F Food Res Int; 2023 Jul; 169():112910. PubMed ID: 37254348 [TBL] [Abstract][Full Text] [Related]
11. Emulsion gels stabilized by soybean protein isolate and pectin: Effects of high intensity ultrasound on the gel properties, stability and β-carotene digestive characteristics. Zhang X; Chen X; Gong Y; Li Z; Guo Y; Yu D; Pan M Ultrason Sonochem; 2021 Nov; 79():105756. PubMed ID: 34562736 [TBL] [Abstract][Full Text] [Related]
12. Influence of particle size on lipid digestion and β-carotene bioaccessibility in emulsions and nanoemulsions. Salvia-Trujillo L; Qian C; Martín-Belloso O; McClements DJ Food Chem; 2013 Nov; 141(2):1472-80. PubMed ID: 23790941 [TBL] [Abstract][Full Text] [Related]
13. The impact of pH on mechanical properties, storage stability and digestion of alginate-based and soy protein isolate-stabilized emulsion gel beads with encapsulated lycopene. Lin D; Kelly AL; Miao S Food Chem; 2022 Mar; 372():131262. PubMed ID: 34628120 [TBL] [Abstract][Full Text] [Related]
14. Emulsion droplet crystallinity attenuates early in vitro digestive lipolysis and beta-carotene bioaccessibility. Hart SM; Lin XL; Thilakarathna SH; Wright AJ Food Chem; 2018 Sep; 260():145-151. PubMed ID: 29699655 [TBL] [Abstract][Full Text] [Related]
15. Control of β-carotene bioaccessibility using starch-based filled hydrogels. Mun S; Kim YR; McClements DJ Food Chem; 2015 Apr; 173():454-61. PubMed ID: 25466045 [TBL] [Abstract][Full Text] [Related]
16. Effect of xanthan gum on lipid digestion and bioaccessibility of β-carotene-loaded rice starch-based filled hydrogels. Park S; Mun S; Kim YR Food Res Int; 2018 Mar; 105():440-445. PubMed ID: 29433234 [TBL] [Abstract][Full Text] [Related]
17. Enhancing rheology and reducing lipid digestion of oil-in-water emulsions using controlled aggregation and heteroaggregation of soybean protein isolate-peach gum microspheres. Chen H; Iqbal S; Wu P; Pan R; Wang N; Bhutto RA; Rehman W; Chen XD Int J Biol Macromol; 2024 Jul; 273(Pt 1):132964. PubMed ID: 38852719 [TBL] [Abstract][Full Text] [Related]
18. Physicochemical stability and gastrointestinal fate of β-carotene-loaded oil-in-water emulsions stabilized by whey protein isolate-low acyl gellan gum conjugates. Nooshkam M; Varidi M Food Chem; 2021 Jun; 347():129079. PubMed ID: 33493834 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and characterization of the W/O/W multiple emulsion through oleogelation of oil. Huang Z; Guo B; Deng C; Tang C; Liu C; Hu X Food Chem; 2021 Oct; 358():129856. PubMed ID: 33933975 [TBL] [Abstract][Full Text] [Related]
20. Influence of Lipid Content in a Corn Oil Preparation on the Bioaccessibility of β-Carotene: A Comparison of Low-Fat and High-Fat Samples. Xia Z; McClements DJ; Xiao H J Food Sci; 2017 Feb; 82(2):373-379. PubMed ID: 28103395 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]