These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39236966)
21. Effect of Gel Structure on the In Vitro Gastrointestinal Digestion Behaviour of Whey Protein Emulsion Gels and the Bioaccessibility of Capsaicinoids. Luo N; Ye A; Wolber FM; Singh H Molecules; 2021 Mar; 26(5):. PubMed ID: 33806537 [TBL] [Abstract][Full Text] [Related]
22. Effect of soluble dietary fiber on soy protein isolate emulsion gel properties, stability and delivery of vitamin D Li B; Luan H; Qin J; Zong A; Liu L; Xu Z; Du F; Xu T Int J Biol Macromol; 2024 Mar; 262(Pt 1):129806. PubMed ID: 38325693 [TBL] [Abstract][Full Text] [Related]
23. In vitro β-Carotene Bioaccessibility and Lipid Digestion in Emulsions: Influence of Pectin Type and Degree of Methyl-Esterification. Verrijssen TA; Christiaens S; Verkempinck SH; Boeve J; Grauwet T; Van Loey AM; Salvia-Trujillo L; Hendrickx ME J Food Sci; 2016 Oct; 81(10):C2327-C2336. PubMed ID: 27680678 [TBL] [Abstract][Full Text] [Related]
24. Influence of soy and whey protein, gelatin and sodium caseinate on carotenoid bioaccessibility. Iddir M; Dingeo G; Porras Yaruro JF; Hammaz F; Borel P; Schleeh T; Desmarchelier C; Larondelle Y; Bohn T Food Funct; 2020 Jun; 11(6):5446-5459. PubMed ID: 32490498 [TBL] [Abstract][Full Text] [Related]
25. Contribution of soybean polysaccharides in digestion of oil-in-water emulsion-based delivery system in an in vitro gastric environment. Wang S; Shao G; Yang J; Zhao H; Qu D; Zhang D; Zhu D; He Y; Liu H Food Sci Technol Int; 2020 Jul; 26(5):444-452. PubMed ID: 31948283 [TBL] [Abstract][Full Text] [Related]
26. Soy protein isolate-xanthan gum complexes to stabilize Pickering emulsions for quercetin delivery. Li L; Wang W; Ji S; Xia Q Food Chem; 2024 Dec; 461():140794. PubMed ID: 39146680 [TBL] [Abstract][Full Text] [Related]
27. Stability, Interfacial Structure, and Gastrointestinal Digestion of β-Carotene-Loaded Pickering Emulsions Co-stabilized by Particles, a Biopolymer, and a Surfactant. Wei Y; Zhou D; Mackie A; Yang S; Dai L; Zhang L; Mao L; Gao Y J Agric Food Chem; 2021 Feb; 69(5):1619-1636. PubMed ID: 33512160 [TBL] [Abstract][Full Text] [Related]
28. Factors impacting lipid digestion and β-carotene bioaccessibility assessed by standardized gastrointestinal model (INFOGEST): oil droplet concentration. Tan Y; Zhang Z; Zhou H; Xiao H; McClements DJ Food Funct; 2020 Aug; 11(8):7126-7137. PubMed ID: 32749423 [TBL] [Abstract][Full Text] [Related]
29. Impact of lipid droplet characteristics on the rheology of plant protein emulsion gels: Droplet size, concentration, and interfacial properties. Hu X; Xiang X; Ju Q; Li S; Julian McClements D Food Res Int; 2024 Sep; 191():114734. PubMed ID: 39059965 [TBL] [Abstract][Full Text] [Related]
30. Stability and bioaccessibility of β-carotene in nanoemulsions stabilized by modified starches. Liang R; Shoemaker CF; Yang X; Zhong F; Huang Q J Agric Food Chem; 2013 Feb; 61(6):1249-57. PubMed ID: 23331094 [TBL] [Abstract][Full Text] [Related]
31. Pseudosciaena crocea roe protein-stabilized emulsions for oral delivery systems: In vitro digestion and in situ intestinal perfusion study. Tang Y; Wang X; Jiang H; Song L; Cui H; Zhang Z; Lin S J Food Sci; 2020 Sep; 85(9):2923-2932. PubMed ID: 32839962 [TBL] [Abstract][Full Text] [Related]
32. Design, characterization and digestibility of β-carotene-loaded emulsion system stabilized by whey protein with chitosan and potato starch addition. Hu Y; Wang L; Julian McClements D Food Chem; 2024 May; 440():138131. PubMed ID: 38103502 [TBL] [Abstract][Full Text] [Related]
33. Effect of the Solid Fat Content on Properties of Emulsion Gels and Stability of β-Carotene. Lu Y; Mao L; Cui M; Yuan F; Gao Y J Agric Food Chem; 2019 Jun; 67(23):6466-6475. PubMed ID: 31117494 [TBL] [Abstract][Full Text] [Related]
34. Fabrication of High-Acyl Gellan-Gum-Stabilized β-Carotene Emulsion: Physicochemical Properties and In Vitro Digestion Simulation. Meng Y; Hang L; Fang S; Li Y; Xu X; Zhang F; Chen J Foods; 2022 Jun; 11(12):. PubMed ID: 35741940 [TBL] [Abstract][Full Text] [Related]
35. Nutraceutical nanoemulsions: influence of carrier oil composition (digestible versus indigestible oil) on β-carotene bioavailability. Rao J; Decker EA; Xiao H; McClements DJ J Sci Food Agric; 2013 Oct; 93(13):3175-83. PubMed ID: 23649644 [TBL] [Abstract][Full Text] [Related]
36. Investigation of the formation mechanism and β-carotene encapsulation stability of emulsion gels based on egg yolk granules and sodium alginate. Zhang H; Tan S; Gan H; Zhang H; Xia N; Jiang L; Ren H; Zhang X Food Chem; 2023 Jan; 400():134032. PubMed ID: 36055145 [TBL] [Abstract][Full Text] [Related]
37. Interfacial rheology, emulsifying property and emulsion stability of glyceryl monooleate-modified corn fiber gum. Wei Y; Xie Y; Cai Z; Guo Y; Zhang H Food Chem; 2021 May; 343():128416. PubMed ID: 33127225 [TBL] [Abstract][Full Text] [Related]
38. Effect of soybean oil content on textural, rheological, and microstructural properties of WBAXs-SPI emulsion-filled gels. Zhang Q; Yin L; Chen F; Zhang P; Lv D; Zhu T; Duan X J Texture Stud; 2021 Apr; 52(2):251-259. PubMed ID: 33410521 [TBL] [Abstract][Full Text] [Related]
39. Young apple polyphenols confer excellent physical and oxidative stabilities to soy protein emulsions for effective β-carotene encapsulation and delivery. Gong T; Song Z; Zhang S; Meng Y; Guo Y Int J Biol Macromol; 2024 Aug; 275(Pt 2):133607. PubMed ID: 38960241 [TBL] [Abstract][Full Text] [Related]
40. Mechanical and water-holding properties and microstructures of soy protein isolate emulsion gels induced by CaCl2, glucono-δ-lactone (GDL), and transglutaminase: influence of thermal treatments before and/or after emulsification. Tang CH; Chen L; Foegeding EA J Agric Food Chem; 2011 Apr; 59(8):4071-7. PubMed ID: 21381784 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]