These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39236985)
1. Deep learning-assisted interactive contouring of lung cancer: Impact on contouring time and consistency. Trimpl MJ; Campbell S; Panakis N; Ajzensztejn D; Burke E; Ellis S; Johnstone P; Doyle E; Towers R; Higgins G; Bernard C; Hustinx R; Vallis KA; Stride EPJ; Gooding MJ Radiother Oncol; 2024 Nov; 200():110500. PubMed ID: 39236985 [TBL] [Abstract][Full Text] [Related]
2. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Lustberg T; van Soest J; Gooding M; Peressutti D; Aljabar P; van der Stoep J; van Elmpt W; Dekker A Radiother Oncol; 2018 Feb; 126(2):312-317. PubMed ID: 29208513 [TBL] [Abstract][Full Text] [Related]
3. Reproducibility of "intelligent" contouring of gross tumor volume in non-small-cell lung cancer on PET/CT images using a standardized visual method. Bayne M; Hicks RJ; Everitt S; Fimmell N; Ball D; Reynolds J; Lau E; Pitman A; Ware R; MacManus M Int J Radiat Oncol Biol Phys; 2010 Jul; 77(4):1151-7. PubMed ID: 20610039 [TBL] [Abstract][Full Text] [Related]
4. Definition of gross tumor volume in lung cancer: inter-observer variability. Van de Steene J; Linthout N; de Mey J; Vinh-Hung V; Claassens C; Noppen M; Bel A; Storme G Radiother Oncol; 2002 Jan; 62(1):37-49. PubMed ID: 11830311 [TBL] [Abstract][Full Text] [Related]
5. Contouring variations and the role of atlas in non-small cell lung cancer radiation therapy: Analysis of a multi-institutional preclinical trial planning study. Cui Y; Chen W; Kong FM; Olsen LA; Beatty RE; Maxim PG; Ritter T; Sohn JW; Higgins J; Galvin JM; Xiao Y Pract Radiat Oncol; 2015; 5(2):e67-75. PubMed ID: 25413413 [TBL] [Abstract][Full Text] [Related]
6. A teaching intervention in a contouring dummy run improved target volume delineation in locally advanced non-small cell lung cancer: Reducing the interobserver variability in multicentre clinical studies. Schimek-Jasch T; Troost EG; Rücker G; Prokic V; Avlar M; Duncker-Rohr V; Mix M; Doll C; Grosu AL; Nestle U Strahlenther Onkol; 2015 Jun; 191(6):525-33. PubMed ID: 25665799 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of a target contouring protocol for 3D conformal radiotherapy in non-small cell lung cancer. Senan S; van Sörnsen de Koste J; Samson M; Tankink H; Jansen P; Nowak PJ; Krol AD; Schmitz P; Lagerwaard FJ Radiother Oncol; 1999 Dec; 53(3):247-55. PubMed ID: 10660205 [TBL] [Abstract][Full Text] [Related]
8. Validation of a Magnetic Resonance Imaging-based Auto-contouring Software Tool for Gross Tumour Delineation in Head and Neck Cancer Radiotherapy Planning. Doshi T; Wilson C; Paterson C; Lamb C; James A; MacKenzie K; Soraghan J; Petropoulakis L; Di Caterina G; Grose D Clin Oncol (R Coll Radiol); 2017 Jan; 29(1):60-67. PubMed ID: 27780693 [TBL] [Abstract][Full Text] [Related]
9. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Ashamalla H; Rafla S; Parikh K; Mokhtar B; Goswami G; Kambam S; Abdel-Dayem H; Guirguis A; Ross P; Evola A Int J Radiat Oncol Biol Phys; 2005 Nov; 63(4):1016-23. PubMed ID: 15979817 [TBL] [Abstract][Full Text] [Related]
10. Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Greco C; Rosenzweig K; Cascini GL; Tamburrini O Lung Cancer; 2007 Aug; 57(2):125-34. PubMed ID: 17478008 [TBL] [Abstract][Full Text] [Related]
11. Variabilities of Magnetic Resonance Imaging-, Computed Tomography-, and Positron Emission Tomography-Computed Tomography-Based Tumor and Lymph Node Delineations for Lung Cancer Radiation Therapy Planning. Karki K; Saraiya S; Hugo GD; Mukhopadhyay N; Jan N; Schuster J; Schutzer M; Fahrner L; Groves R; Olsen KM; Ford JC; Weiss E Int J Radiat Oncol Biol Phys; 2017 Sep; 99(1):80-89. PubMed ID: 28816167 [TBL] [Abstract][Full Text] [Related]
12. Gross tumor volume segmentation for head and neck cancer radiotherapy using deep dense multi-modality network. Guo Z; Guo N; Gong K; Zhong S; Li Q Phys Med Biol; 2019 Oct; 64(20):205015. PubMed ID: 31514173 [TBL] [Abstract][Full Text] [Related]
13. Benefit of using motion compensated reconstructions for reducing inter-observer and intra-observer contouring variation for organs at risk in lung cancer patients. McWilliam A; Lee L; Harris M; Sheikh H; Pemberton L; Faivre-Finn C; van Herk M Radiother Oncol; 2018 Feb; 126(2):333-338. PubMed ID: 29221648 [TBL] [Abstract][Full Text] [Related]
14. Use of CD-ROM-based tool for analyzing contouring variations in involved-field radiotherapy for Stage III NSCLC. van Sörnsen de Koste JR; Senan S; Underberg RW; Oei SS; Elshove D; Slotman BJ; Lagerwaard FJ Int J Radiat Oncol Biol Phys; 2005 Oct; 63(2):334-9. PubMed ID: 16168828 [TBL] [Abstract][Full Text] [Related]
15. Inter-scan and inter-observer tumour volume delineation variability on cone beam computed tomography in patients treated with stereotactic body radiation therapy for early-stage non-small cell lung cancer. Hou Y; Lee S; Agrawal V; Romano J; Baldini EH; Chen AB; Kozono DE; Killoran JH; Wagar M; Hacker FL; Aerts HJ; Lewis JH; Mak RH J Med Imaging Radiat Oncol; 2017 Feb; 61(1):93-98. PubMed ID: 27709803 [TBL] [Abstract][Full Text] [Related]
16. Impact of Peer Review in Reducing Uncertainty in the Definition of the Lung Target Volume Among Trainee Oncologists. Mercieca S; Pan S; Belderbos J; Salem A; Tenant S; Aznar MC; Woolf D; Radhakrishna G; van Herk M Clin Oncol (R Coll Radiol); 2020 Jun; 32(6):363-372. PubMed ID: 32033892 [TBL] [Abstract][Full Text] [Related]
17. Contouring cardiac substructures on average intensity projection 4D-CT for lung cancer radiotherapy: A proposal of a heart valve contouring atlas. Socha J; Rygielska A; Uziębło-Życzkowska B; Chałubińska-Fendler J; Jurek A; Maciorowska M; Mielniczuk M; Pawłowski P; Tyc-Szczepaniak D; Krzesiński P; Kepka L Radiother Oncol; 2022 Feb; 167():261-268. PubMed ID: 34990727 [TBL] [Abstract][Full Text] [Related]
18. Clinical assessment of deep learning-based uncertainty maps in lung cancer segmentation. Maruccio FC; Eppinga W; Laves MH; Navarro RF; Salvi M; Molinari F; Papaconstadopoulos P Phys Med Biol; 2024 Jan; 69(3):. PubMed ID: 38171012 [No Abstract] [Full Text] [Related]
19. Conventional 3D staging PET/CT in CT simulation for lung cancer: impact of rigid and deformable target volume alignments for radiotherapy treatment planning. Hanna GG; Van Sörnsen De Koste JR; Carson KJ; O'Sullivan JM; Hounsell AR; Senan S Br J Radiol; 2011 Oct; 84(1006):919-29. PubMed ID: 21224293 [TBL] [Abstract][Full Text] [Related]
20. Deep Learning for Automatic Gross Tumor Volumes Contouring in Esophageal Cancer Based on Contrast-Enhanced Computed Tomography Images: A Multi-Institutional Study. Zhang S; Li K; Sun Y; Wan Y; Ao Y; Zhong Y; Liang M; Wang L; Chen X; Pei X; Hu Y; Chen D; Li M; Shan H Int J Radiat Oncol Biol Phys; 2024 Aug; 119(5):1590-1600. PubMed ID: 38432286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]