These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 39237193)

  • 1. scRNA-Explorer: An End-user Online Tool for Single Cell RNA-seq Data Analysis Featuring Gene Correlation and Data Filtering.
    Baltsavia I; Oulas A; Theodosiou T; Lavigne MD; Andreakos E; Mavrothalassitis G; Iliopoulos I
    J Mol Biol; 2024 Sep; 436(17):168654. PubMed ID: 39237193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying cell states in single-cell RNA-seq data at statistically maximal resolution.
    Grobecker P; Sakoparnig T; van Nimwegen E
    PLoS Comput Biol; 2024 Jul; 20(7):e1012224. PubMed ID: 38995959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shaoxia: a web-based interactive analysis platform for single cell RNA sequencing data.
    Wei W; Xia X; Li T; Chen Q; Feng X
    BMC Genomics; 2024 Apr; 25(1):402. PubMed ID: 38658838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SC1: A Tool for Interactive Web-Based Single-Cell RNA-Seq Data Analysis.
    Moussa M; Măndoiu II
    J Comput Biol; 2021 Aug; 28(8):820-841. PubMed ID: 34115950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Clustering scRNA-seq data with the cross-view collaborative information fusion strategy.
    Lou Z; Wei X; Hu Y; Hu S; Wu Y; Tian Z
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39402696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A guide to single-cell RNA sequencing analysis using web-based tools for non-bioinformatician.
    Yarlagadda S; Giorgio TD
    FEBS J; 2024 Jun; 291(12):2545-2561. PubMed ID: 38148322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DIscBIO: A User-Friendly Pipeline for Biomarker Discovery in Single-Cell Transcriptomics.
    Ghannoum S; Leoncio Netto W; Fantini D; Ragan-Kelley B; Parizadeh A; Jonasson E; Ståhlberg A; Farhan H; Köhn-Luque A
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33573289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Latent cellular analysis robustly reveals subtle diversity in large-scale single-cell RNA-seq data.
    Cheng C; Easton J; Rosencrance C; Li Y; Ju B; Williams J; Mulder HL; Pang Y; Chen W; Chen X
    Nucleic Acids Res; 2019 Dec; 47(22):e143. PubMed ID: 31566233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ASAP: a web-based platform for the analysis and interactive visualization of single-cell RNA-seq data.
    Gardeux V; David FPA; Shajkofci A; Schwalie PC; Deplancke B
    Bioinformatics; 2017 Oct; 33(19):3123-3125. PubMed ID: 28541377
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comprehensive Survey of Statistical Approaches for Differential Expression Analysis in Single-Cell RNA Sequencing Studies.
    Das S; Rai A; Merchant ML; Cave MC; Rai SN
    Genes (Basel); 2021 Dec; 12(12):. PubMed ID: 34946896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An accessible, interactive GenePattern Notebook for analysis and exploration of single-cell transcriptomic data.
    Mah CK; Wenzel AT; Juarez EF; Tabor T; Reich MM; Mesirov JP
    F1000Res; 2018; 7():1306. PubMed ID: 31316748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-Cell RNA Sequencing Analysis: A Step-by-Step Overview.
    Slovin S; Carissimo A; Panariello F; Grimaldi A; Bouché V; Gambardella G; Cacchiarelli D
    Methods Mol Biol; 2021; 2284():343-365. PubMed ID: 33835452
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single Cell Explorer, collaboration-driven tools to leverage large-scale single cell RNA-seq data.
    Feng D; Whitehurst CE; Shan D; Hill JD; Yue YG
    BMC Genomics; 2019 Aug; 20(1):676. PubMed ID: 31455220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Falco: a quick and flexible single-cell RNA-seq processing framework on the cloud.
    Yang A; Troup M; Lin P; Ho JW
    Bioinformatics; 2017 Mar; 33(5):767-769. PubMed ID: 28025200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ascend: R package for analysis of single-cell RNA-seq data.
    Senabouth A; Lukowski SW; Hernandez JA; Andersen SB; Mei X; Nguyen QH; Powell JE
    Gigascience; 2019 Aug; 8(8):. PubMed ID: 31505654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. popsicleR: A R Package for Pre-processing and Quality Control Analysis of Single Cell RNA-seq Data.
    Grandi F; Caroli J; Romano O; Marchionni M; Forcato M; Bicciato S
    J Mol Biol; 2022 Jun; 434(11):167560. PubMed ID: 35662457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Random forest based similarity learning for single cell RNA sequencing data.
    Pouyan MB; Kostka D
    Bioinformatics; 2018 Jul; 34(13):i79-i88. PubMed ID: 29950006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond benchmarking and towards predictive models of dataset-specific single-cell RNA-seq pipeline performance.
    Fang C; Selega A; Campbell KR
    Genome Biol; 2024 Jun; 25(1):159. PubMed ID: 38886757
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists.
    Zhu X; Wolfgruber TK; Tasato A; Arisdakessian C; Garmire DG; Garmire LX
    Genome Med; 2017 Dec; 9(1):108. PubMed ID: 29202807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.