These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 39237480)
21. New photoswitching unit for magnetic interaction: diarylethene with 2,5-bis(arylethynyl)-3-thienyl group. Tanifuji N; Irie M; Matsuda K J Am Chem Soc; 2005 Sep; 127(38):13344-53. PubMed ID: 16173768 [TBL] [Abstract][Full Text] [Related]
22. Molecular design strategy toward diarylethenes that photoswitch with visible light. Fukaminato T; Hirose T; Doi T; Hazama M; Matsuda K; Irie M J Am Chem Soc; 2014 Dec; 136(49):17145-54. PubMed ID: 25390547 [TBL] [Abstract][Full Text] [Related]
23. Fluorescence On/Off Switching in Nanoparticles Consisting of Two Types of Diarylethenes. Nakahama T; Kitagawa D; Sotome H; Fukaminato T; Ito S; Miyasaka H; Kobatake S ACS Omega; 2018 Feb; 3(2):2374-2382. PubMed ID: 31458535 [TBL] [Abstract][Full Text] [Related]
24. Triplet pathways in diarylethene photochromism: photophysical and computational study of dyads containing ruthenium(II) polypyridine and 1,2-bis(2-methylbenzothiophene-3-yl)maleimide units. Indelli MT; Carli S; Ghirotti M; Chiorboli C; Ravaglia M; Garavelli M; Scandola F J Am Chem Soc; 2008 Jun; 130(23):7286-99. PubMed ID: 18479107 [TBL] [Abstract][Full Text] [Related]
25. Thermal bleaching reactions of photochromic diarylethenes with thiophene-S,S-dioxide for a light-starting irreversible thermosensor. Shoji H; Kobatake S Chem Commun (Camb); 2013 Mar; 49(23):2362-4. PubMed ID: 23407660 [TBL] [Abstract][Full Text] [Related]
26. Cyclization from Higher Excited States of Diarylethenes Having a Substituted Azulene Ring. Hattori Y; Maejima T; Sawae Y; Kitai JI; Morimoto M; Toyoda R; Nishihara H; Yokojima S; Nakamura S; Uchida K Chemistry; 2020 Sep; 26(50):11441-11450. PubMed ID: 32432373 [TBL] [Abstract][Full Text] [Related]
27. Synthesis of fluorescent diarylethenes having a 2,4,5-triphenylimidazole chromophore. Yagi K; Soong CF; Irie M J Org Chem; 2001 Aug; 66(16):5419-23. PubMed ID: 11485464 [TBL] [Abstract][Full Text] [Related]
28. Photocyclization of Diarylethenes: The Effect of Electron and Proton Acceptors as Additives. Yadykov AV; Lvov AG; Krayushkin MM; Zakharov AV; Shirinian VZ J Org Chem; 2021 Aug; 86(15):10023-10031. PubMed ID: 34314191 [TBL] [Abstract][Full Text] [Related]
29. Single electron transfer-promoted photocyclization reactions of linked acceptor-polydonor systems: effects of chain length and type on the efficiencies of macrocyclic ring-forming photoreactions of tethered alpha-silyl ether phthalimide substrates. Cho DW; Choi JH; Oh SW; Quan C; Yoon UC; Wang R; Yang S; Mariano PS J Am Chem Soc; 2008 Feb; 130(7):2276-84. PubMed ID: 18225898 [TBL] [Abstract][Full Text] [Related]
30. Visible-Light-Promoted 6π Photocyclization of Zhang SZ; Zhang SS; Li JL; Shen S; Yang XL; Niu X J Org Chem; 2023 Jul; 88(13):9094-9104. PubMed ID: 37314129 [TBL] [Abstract][Full Text] [Related]
31. Photo-, solvent-, and ion-controlled multichromism of imidazolium-substituted diarylethenes. Nakashima T; Miyamura K; Sakai T; Kawai T Chemistry; 2009; 15(8):1977-84. PubMed ID: 18781555 [TBL] [Abstract][Full Text] [Related]
32. Modulating the Photocyclization Reactivity of Diarylethenes through Changes in the Excited-State Aromaticity of the π-Linker. Oruganti B; Wang J; Durbeej B J Org Chem; 2022 Sep; 87(17):11565-11571. PubMed ID: 35997595 [TBL] [Abstract][Full Text] [Related]
34. Oxidative and reductive cyclization in stiff dithienylethenes. Kleinwächter M; Teichmann E; Grubert L; Herder M; Hecht S Beilstein J Org Chem; 2018; 14():2812-2821. PubMed ID: 30498531 [TBL] [Abstract][Full Text] [Related]
35. Total synthesis of epoxyquinols A, B, and C and epoxytwinol A and the reactivity of a 2H-pyran derivative as the diene component in the Diels-Alder reaction. Shoji M; Imai H; Mukaida M; Sakai K; Kakeya H; Osada H; Hayashi Y J Org Chem; 2005 Jan; 70(1):79-91. PubMed ID: 15624908 [TBL] [Abstract][Full Text] [Related]
36. Electrochemical and photochemical cyclization and cycloreversion of diarylethenes and diarylethene-capped sexithiophene wires. Staykov A; Areephong J; Browne WR; Feringa BL; Yoshizawa K ACS Nano; 2011 Feb; 5(2):1165-78. PubMed ID: 21204563 [TBL] [Abstract][Full Text] [Related]
37. Reversible C═N Bond Formation Controls Charge-Separation in an Aza-Diarylethene Photoswitch. Sacherer M; Gracheva S; Maid H; Placht C; Hampel F; Dube H J Am Chem Soc; 2024 Apr; 146(14):9575-9582. PubMed ID: 38536769 [TBL] [Abstract][Full Text] [Related]
38. Crystal engineering of photochromic diarylethene single crystals. Morimoto M; Kobatake S; Irie M Chem Rec; 2004; 4(1):23-38. PubMed ID: 15057866 [TBL] [Abstract][Full Text] [Related]
39. The N-cyclopropylimine-1-pyrroline photorearrangement as a synthetic tool: scope and limitations. Soldevilla A; Sampedro D; Campos PJ; Rodríguez MA J Org Chem; 2005 Aug; 70(17):6976-9. PubMed ID: 16095330 [TBL] [Abstract][Full Text] [Related]
40. Self-assembly of photochromic diarylethenes with amphiphilic side chains: reversible thermal and photochemical control. Hirose T; Matsuda K; Irie M J Org Chem; 2006 Sep; 71(20):7499-508. PubMed ID: 16995652 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]