These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 39238150)
1. Shorting the metaphorical circuit: vascular partitioning and stomatal patchiness can create apparent unsaturation and CO Rockwell FE New Phytol; 2024 Sep; ():. PubMed ID: 39238150 [TBL] [Abstract][Full Text] [Related]
2. Effects of the mesophyll on stomatal responses in amphistomatous leaves. Mott KA; Peak D Plant Cell Environ; 2018 Dec; 41(12):2835-2843. PubMed ID: 30073677 [TBL] [Abstract][Full Text] [Related]
3. Humidity gradients in the air spaces of leaves. Wong SC; Canny MJ; Holloway-Phillips M; Stuart-Williams H; Cernusak LA; Márquez DA; Farquhar GD Nat Plants; 2022 Aug; 8(8):971-978. PubMed ID: 35941216 [TBL] [Abstract][Full Text] [Related]
4. Spatio-temporal decoupling of stomatal and mesophyll conductance induced by vein cutting in leaves of Helianthus annuus. Hanson DT; Green LE; Pockman WT Front Plant Sci; 2013; 4():365. PubMed ID: 24065972 [TBL] [Abstract][Full Text] [Related]
5. Stomatal patchiness in Mediterranean evergreen sclerophylls : Phenomenology and consequences for the interpretation of the midday depression in photosynthesis and transpiration. Beyschlag W; Pfanz H; Ryel RJ Planta; 1992 Jul; 187(4):546-53. PubMed ID: 24178151 [TBL] [Abstract][Full Text] [Related]
6. Extreme undersaturation in the intercellular airspace of leaves: a failure of Gaastra or Ohm? Rockwell FE; Holbrook NM; Jain P; Huber AE; Sen S; Stroock AD Ann Bot; 2022 Sep; 130(3):301-316. PubMed ID: 35896037 [TBL] [Abstract][Full Text] [Related]
7. Separating the contribution of the upper and lower mesophyll to photosynthesis in Zea mays L. leaves. Long SP; Farage PK; Bolhár-Nordenkampf HR; Rohrhofer U Planta; 1989 Feb; 177(2):207-16. PubMed ID: 24212343 [TBL] [Abstract][Full Text] [Related]
8. Leaf hydraulic conductivity and stomatal responses to humidity in amphistomatous leaves. Mott KA Plant Cell Environ; 2007 Nov; 30(11):1444-9. PubMed ID: 17897414 [TBL] [Abstract][Full Text] [Related]
9. Combined leaf gas-exchange system for model assessment. Tominaga J; Kawamitsu Y J Exp Bot; 2024 May; 75(10):2982-2993. PubMed ID: 38426531 [TBL] [Abstract][Full Text] [Related]
10. CO2 and Water Vapor Exchange across Leaf Cuticle (Epidermis) at Various Water Potentials. Boyer JS; Wong SC; Farquhar GD Plant Physiol; 1997 May; 114(1):185-191. PubMed ID: 12223698 [TBL] [Abstract][Full Text] [Related]
11. Unsaturation in the air spaces of leaves and its implications. Cernusak LA; Wong SC; Stuart-Williams H; Márquez DA; Pontarin N; Farquhar GD Plant Cell Environ; 2024 Jun; ():. PubMed ID: 38867619 [TBL] [Abstract][Full Text] [Related]
12. Differential coordination of stomatal conductance, mesophyll conductance, and leaf hydraulic conductance in response to changing light across species. Xiong D; Douthe C; Flexas J Plant Cell Environ; 2018 Feb; 41(2):436-450. PubMed ID: 29220546 [TBL] [Abstract][Full Text] [Related]
13. Coupled Gas-Exchange Model for C Yun K; Timlin D; Kim SH Plants (Basel); 2020 Oct; 9(10):. PubMed ID: 33066493 [TBL] [Abstract][Full Text] [Related]
14. Effect of Leaf Water Potential on Internal Humidity and CO Vesala T; Sevanto S; Grönholm T; Salmon Y; Nikinmaa E; Hari P; Hölttä T Front Plant Sci; 2017; 8():54. PubMed ID: 28220128 [TBL] [Abstract][Full Text] [Related]
15. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2 : evidence from carbon isotope discrimination in paleo and CO2 enrichment studies. Voelker SL; Brooks JR; Meinzer FC; Anderson R; Bader MK; Battipaglia G; Becklin KM; Beerling D; Bert D; Betancourt JL; Dawson TE; Domec JC; Guyette RP; Körner C; Leavitt SW; Linder S; Marshall JD; Mildner M; Ogée J; Panyushkina I; Plumpton HJ; Pregitzer KS; Saurer M; Smith AR; Siegwolf RT; Stambaugh MC; Talhelm AF; Tardif JC; Van de Water PK; Ward JK; Wingate L Glob Chang Biol; 2016 Feb; 22(2):889-902. PubMed ID: 26391334 [TBL] [Abstract][Full Text] [Related]
16. An improved representation of the relationship between photosynthesis and stomatal conductance leads to more stable estimation of conductance parameters and improves the goodness-of-fit across diverse data sets. Lamour J; Davidson KJ; Ely KS; Le Moguédec G; Leakey ADB; Li Q; Serbin SP; Rogers A Glob Chang Biol; 2022 Jun; 28(11):3537-3556. PubMed ID: 35090072 [TBL] [Abstract][Full Text] [Related]
17. Effect of Vapor Pressure Deficit on Gas Exchange in Wild-Type and Abscisic Acid-Insensitive Plants. Cernusak LA; Goldsmith GR; Arend M; Siegwolf RTW Plant Physiol; 2019 Dec; 181(4):1573-1586. PubMed ID: 31562233 [TBL] [Abstract][Full Text] [Related]
18. Stomata on the abaxial and adaxial leaf surfaces contribute differently to leaf gas exchange and photosynthesis in wheat. Wall S; Vialet-Chabrand S; Davey P; Van Rie J; Galle A; Cockram J; Lawson T New Phytol; 2022 Sep; 235(5):1743-1756. PubMed ID: 35586964 [TBL] [Abstract][Full Text] [Related]
19. Measurement of leaf hydraulic conductance and stomatal conductance and their responses to irradiance and dehydration using the Evaporative Flux Method (EFM). Sack L; Scoffoni C J Vis Exp; 2012 Dec; (70):. PubMed ID: 23299126 [TBL] [Abstract][Full Text] [Related]
20. Estimation of Mesophyll Conductance to CO(2) Flux by Three Different Methods. Loreto F; Harley PC; Di Marco G; Sharkey TD Plant Physiol; 1992 Apr; 98(4):1437-43. PubMed ID: 16668812 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]