These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 39239088)

  • 1. Approximation of Classical Two-Phase Flows of Viscous Incompressible Fluids by a Navier-Stokes/Allen-Cahn System.
    Abels H; Fischer J; Moser M
    Arch Ration Mech Anal; 2024; 248(5):77. PubMed ID: 39239088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiphase flows of N immiscible incompressible fluids: Conservative Allen-Cahn equation and lattice Boltzmann equation method.
    Zheng L; Zheng S; Zhai Q
    Phys Rev E; 2020 Jan; 101(1-1):013305. PubMed ID: 32069624
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid Allen-Cahn-based lattice Boltzmann model for incompressible two-phase flows: The reduction of numerical dispersion.
    Hu Y; Li D; Jin L; Niu X; Shu S
    Phys Rev E; 2019 Feb; 99(2-1):023302. PubMed ID: 30934363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved hybrid Allen-Cahn phase-field-based lattice Boltzmann method for incompressible two-phase flows.
    Liu X; Chai Z; Shi B
    Phys Rev E; 2023 Mar; 107(3-2):035308. PubMed ID: 37073063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boussinesq approximation of the Cahn-Hilliard-Navier-Stokes equations.
    Vorobev A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 2):056312. PubMed ID: 21230581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consistent and conservative phase-field-based lattice Boltzmann method for incompressible two-phase flows.
    Zhan C; Chai Z; Shi B
    Phys Rev E; 2022 Aug; 106(2-2):025319. PubMed ID: 36109994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved phase-field-based lattice Boltzmann method for thermocapillary flow.
    Yue L; Chai Z; Wang H; Shi B
    Phys Rev E; 2022 Jan; 105(1-2):015314. PubMed ID: 35193195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Color-gradient-based phase-field equation for multiphase flow.
    Haghani R; Erfani H; McClure JE; Flekkøy EG; Berg CF
    Phys Rev E; 2024 Mar; 109(3-2):035301. PubMed ID: 38632731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regularity criterion for solutions of the three-dimensional Cahn-Hilliard-Navier-Stokes equations and associated computations.
    Gibbon JD; Pal N; Gupta A; Pandit R
    Phys Rev E; 2016 Dec; 94(6-1):063103. PubMed ID: 28085309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-field-based lattice Boltzmann modeling of large-density-ratio two-phase flows.
    Liang H; Xu J; Chen J; Wang H; Chai Z; Shi B
    Phys Rev E; 2018 Mar; 97(3-1):033309. PubMed ID: 29776082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of the lattice Boltzmann models for Allen-Cahn and Cahn-Hilliard equations.
    Wang HL; Chai ZH; Shi BC; Liang H
    Phys Rev E; 2016 Sep; 94(3-1):033304. PubMed ID: 27739765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phase-field-based lattice Boltzmann model for simulating thermocapillary flows.
    Wang L; He K; Wang H
    Phys Rev E; 2023 Nov; 108(5-2):055306. PubMed ID: 38115446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase-field lattice Boltzmann model with singular mobility for quasi-incompressible two-phase flows.
    Bao J; Guo Z
    Phys Rev E; 2024 Feb; 109(2-2):025302. PubMed ID: 38491598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particles at fluid-fluid interfaces: A new Navier-Stokes-Cahn-Hilliard surface- phase-field-crystal model.
    Aland S; Lowengrub J; Voigt A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 2):046321. PubMed ID: 23214691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic Navier-Stokes Equations on a Thin Spherical Domain.
    Brzeźniak Z; Dhariwal G; Le Gia QT
    Appl Math Optim; 2021; 84(2):1971-2035. PubMed ID: 34720249
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Error estimates and physics informed augmentation of neural networks for thermally coupled incompressible Navier Stokes equations.
    Goraya S; Sobh N; Masud A
    Comput Mech; 2023 Aug; 72(2):267-289. PubMed ID: 37583614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase-field-based lattice Boltzmann model for immiscible incompressible N-phase flows.
    Yuan X; Liang H; Chai Z; Shi B
    Phys Rev E; 2020 Jun; 101(6-1):063310. PubMed ID: 32688516
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular scale contact line hydrodynamics of immiscible flows.
    Qian T; Wang XP; Sheng P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jul; 68(1 Pt 2):016306. PubMed ID: 12935245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An approximate analytical solution of the Allen-Cahn equation using homotopy perturbation method and homotopy analysis method.
    Hussain S; Shah A; Ayub S; Ullah A
    Heliyon; 2019 Dec; 5(12):e03060. PubMed ID: 31890973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows.
    Li Z; Lai MC
    East Asian J Applied Math; 2011 Jan; 1(2):155-171. PubMed ID: 23795308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.