These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 39239197)

  • 1. Exploring plant growth promoting traits and biocontrol potential of new isolated
    Ayaz M; Ali Q; Zhao W; Chi YK; Ali F; Rashid KA; Cao S; He YQ; Bukero AA; Huang WK; Qi RD
    Front Plant Sci; 2024; 15():1444328. PubMed ID: 39239197
    [No Abstract]   [Full Text] [Related]  

  • 2. Biocontrol potential of Trichoderma harzianum isolate T-aloe against Sclerotinia sclerotiorum in soybean.
    Zhang F; Ge H; Zhang F; Guo N; Wang Y; Chen L; Ji X; Li C
    Plant Physiol Biochem; 2016 Mar; 100():64-74. PubMed ID: 26774866
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation of a novel rhizobacteria having multiple plant growth promoting traits and antifungal activity against certain phytopathogens.
    Goswami M; Deka S
    Microbiol Res; 2020 Nov; 240():126516. PubMed ID: 32622988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal potential against Sclerotinia sclerotiorum (Lib.) de Bary and plant growth promoting abilities of Bacillus isolates from canola (Brassica napus L.) roots.
    Ribeiro IDA; Bach E; da Silva Moreira F; Müller AR; Rangel CP; Wilhelm CM; Barth AL; Passaglia LMP
    Microbiol Res; 2021 Jul; 248():126754. PubMed ID: 33848783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biocontrol of Sclerotinia sclerotiorum (Lib.) de Bary on common bean by native lipopeptide-producer Bacillus strains.
    Sabaté DC; Brandan CP; Petroselli G; Erra-Balsells R; Audisio MC
    Microbiol Res; 2018 Jun; 211():21-30. PubMed ID: 29705203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antifungal, Plant Growth-Promoting, and Genomic Properties of an Endophytic Actinobacterium
    Liu D; Yan R; Fu Y; Wang X; Zhang J; Xiang W
    Front Microbiol; 2019; 10():2077. PubMed ID: 31551997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a
    Hu J; Su Z; Dong B; Wang D; Liu X; Meng H; Guo Q; Zhou H
    Curr Issues Mol Biol; 2023 May; 45(6):4600-4611. PubMed ID: 37367041
    [No Abstract]   [Full Text] [Related]  

  • 8. Exploring the Mycovirus Sclerotinia sclerotiorum Hypovirulence-Associated DNA Virus 1 as a Biocontrol Agent of White Mold Caused by
    Fu M; Qu Z; Pierre-Pierre N; Jiang D; Souza FL; Miklas PN; Porter LD; Vandemark GJ; Chen W
    Plant Dis; 2024 Mar; 108(3):624-634. PubMed ID: 37743591
    [No Abstract]   [Full Text] [Related]  

  • 9. Plant-beneficial Streptomyces dioscori SF1 potential biocontrol and plant growth promotion in saline soil within the arid and semi-arid areas.
    Li X; Lang D; Wang J; Zhang W; Zhang X
    Environ Sci Pollut Res Int; 2023 Jun; 30(27):70194-70212. PubMed ID: 37145360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen.
    Bolton MD; Thomma BP; Nelson BD
    Mol Plant Pathol; 2006 Jan; 7(1):1-16. PubMed ID: 20507424
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macrolactin A mediated biocontrol of
    Pandey C; Prabha D; Negi YK; Maheshwari DK; Dheeman S; Gupta M
    Front Microbiol; 2023; 14():1105849. PubMed ID: 36970695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant Growth Promotion and Biocontrol of Leaf Blight Caused by
    Wang J; Qin S; Fan R; Peng Q; Hu X; Yang L; Liu Z; Baccelli I; Migheli Q; Berg G; Chen X; Cernava T
    J Fungi (Basel); 2023 Jan; 9(2):. PubMed ID: 36836247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biocontrol traits and antagonistic potential of Bacillus amyloliquefaciens strain NJZJSB3 against Sclerotinia sclerotiorum, a causal agent of canola stem rot.
    Wu Y; Yuan J; Raza W; Shen Q; Huang Q
    J Microbiol Biotechnol; 2014 Oct; 24(10):1327-36. PubMed ID: 24861342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual RNA Sequencing Analysis of
    Cheng Y; Gao X; He H; Zhang X; Wang R; Liu J
    Front Microbiol; 2022; 13():924313. PubMed ID: 35814672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endophytic Bacillus spp. from medicinal plants inhibit mycelial growth of Sclerotinia sclerotiorum and promote plant growth.
    Ansary WR; Prince FRK; Haque E; Sultana F; West HM; Rahman M; Mondol AM; Akanda AM; Rahman M; Clarke ML; Islam T
    Z Naturforsch C J Biosci; 2018 Apr; 73(5-6):247-256. PubMed ID: 29652669
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Jan F; Arshad H; Ahad M; Jamal A; Smith DL
    Front Plant Sci; 2023; 14():1205894. PubMed ID: 37538061
    [No Abstract]   [Full Text] [Related]  

  • 18. A mutant of the nematophagous fungus Paecilomyces lilacinus (Thom) is a novel biocontrol agent for Sclerotinia sclerotiorum.
    Yang F; Abdelnabby H; Xiao Y
    Microb Pathog; 2015 Dec; 89():169-76. PubMed ID: 26521137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological control of Sclerotinia sclerotiorum (Lib.) de Bary, the causal agent of white mold, by Pseudomonas species on canola petals.
    Behnam S; Ahmadzadeh M; Sharifi Tehrani A; Hedjaroude GA; Farzaneh M
    Commun Agric Appl Biol Sci; 2007; 72(4):993-6. PubMed ID: 18396840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocontrol agents-mediated suppression of oxalic acid induced cell death during Sclerotinia sclerotiorum-pea interaction.
    Jain A; Singh A; Singh S; Sarma BK; Singh HB
    J Basic Microbiol; 2015 May; 55(5):601-6. PubMed ID: 24920251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.