These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 39239382)

  • 1. Multi-physics simulations and experimental comparisons for the optical and electrical forces acting on a silica nanoparticle trapped by a double-nanohole plasmonic nanopore sensor.
    Asadzadeh H; Renkes S; Kim M; Alexandrakis G
    Sens Biosensing Res; 2023 Aug; 41():. PubMed ID: 39239382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-induced back action actuated nanopore electrophoresis (SANE).
    Raza MU; Peri SSS; Ma LC; Iqbal SM; Alexandrakis G
    Nanotechnology; 2018 Oct; 29(43):435501. PubMed ID: 30073973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Induced Back-Action Actuated Nanopore Electrophoresis (SANE) Sensor for Label-Free Detection of Cancer Immunotherapy-Relevant Antibody-Ligand Interactions.
    Peri SSS; Raza MU; Sabnani MK; Ghaffari S; Gimlin S; Wawro DD; Lee JS; Kim MJ; Weidanz J; Alexandrakis G
    Methods Mol Biol; 2022; 2394():343-376. PubMed ID: 35094337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantification of low affinity binding interactions between natural killer cell inhibitory receptors and targeting ligands with a self-induced back-action actuated nanopore electrophoresis (SANE) sensor.
    Peri SSS; Sabnani MK; Raza MU; Urquhart EL; Ghaffari S; Lee JS; Kim MJ; Weidanz J; Alexandrakis G
    Nanotechnology; 2021 Jan; 32(4):045501. PubMed ID: 33027774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of specific antibody-ligand interactions with a self-induced back-action actuated nanopore electrophoresis sensor.
    Peri SSS; Sabnani MK; Raza MU; Ghaffari S; Gimlin S; Wawro DD; Lee JS; Kim MJ; Weidanz J; Alexandrakis G
    Nanotechnology; 2019 Nov; 31(8):085502. PubMed ID: 31675752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical trapping of nanoparticles.
    Bergeron J; Zehtabi-Oskuie A; Ghaffari S; Pang Y; Gordon R
    J Vis Exp; 2013 Jan; (71):e4424. PubMed ID: 23354173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Volume discrimination of nanoparticles via electrical trapping using nanopores.
    Arima A; Tsutsui M; Taniguchi M
    J Nanobiotechnology; 2019 Mar; 17(1):40. PubMed ID: 30871539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantifying the Role of the Surfactant and the Thermophoretic Force in Plasmonic Nano-optical Trapping.
    Jiang Q; Rogez B; Claude JB; Baffou G; Wenger J
    Nano Lett; 2020 Dec; 20(12):8811-8817. PubMed ID: 33237789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forces affecting double-stranded DNA translocation through synthetic nanopores.
    Chen L; Conlisk AT
    Biomed Microdevices; 2011 Apr; 13(2):403-14. PubMed ID: 21279445
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the substrate contribution to the back action trapping of plasmonic nanoparticles on resonant near-field traps in plasmonic films.
    Padhy P; Zaman MA; Hansen P; Hesselink L
    Opt Express; 2017 Oct; 25(21):26198-26214. PubMed ID: 29041280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-speed nanoscale optical trapping with plasmonic double nanohole aperture.
    Anyika T; Hong C; Ndukaife JC
    Nanoscale; 2023 Jun; 15(22):9710-9717. PubMed ID: 37132641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enabling Self-Induced Back-Action Trapping of Gold Nanoparticles in Metamaterial Plasmonic Tweezers.
    Bouloumis TD; Kotsifaki DG; Nic Chormaic S
    Nano Lett; 2023 Jun; 23(11):4723-4731. PubMed ID: 37256850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unraveling the optomechanical nature of plasmonic trapping.
    Mestres P; Berthelot J; Aćimović SS; Quidant R
    Light Sci Appl; 2016 Jul; 5(7):e16092. PubMed ID: 30167173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-spherical gold nanoparticles trapped in optical tweezers: shape matters.
    Brzobohatý O; Šiler M; Trojek J; Chvátal L; Karásek V; Zemánek P
    Opt Express; 2015 Apr; 23(7):8179-89. PubMed ID: 25968657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mirror-Enhanced Plasmonic Nanoaperture for Ultrahigh Optical Force Generation with Minimal Heat Generation.
    Anyika T; Hong I; Ndukaife JC
    Nano Lett; 2023 Dec; 23(24):11416-11423. PubMed ID: 37987748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity.
    Chen C; Juan ML; Li Y; Maes G; Borghs G; Van Dorpe P; Quidant R
    Nano Lett; 2012 Jan; 12(1):125-32. PubMed ID: 22136462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic nano-optical trap stiffness measurements and design optimization.
    Jiang Q; Claude JB; Wenger J
    Nanoscale; 2021 Feb; 13(7):4188-4194. PubMed ID: 33576761
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Nanohole Arrays on Top of Porous Silicon Sensors: A Win-Win Situation.
    Balderas-Valadez RF; Pacholski C
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):36436-36444. PubMed ID: 34297537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards Digital Twins of Plasmonic Sensors: Constructing the Complex Numerical Model of a Plasmonic Sensor Based on Hexagonally Arranged Gold Nanoparticles.
    Bonyár A; Kovács R
    Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilization of plasmonic and photonic crystal nanostructures for enhanced micro- and nanoparticle manipulation.
    Simmons CS; Knouf EC; Tewari M; Lin LY
    J Vis Exp; 2011 Sep; (55):. PubMed ID: 21988841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.