These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 39239382)

  • 21. Contactless optical trapping and manipulation of nanoparticles utilizing SIBA mechanism and EDL force.
    Sahafi M; Habibzadeh-Sharif A
    Opt Express; 2019 Sep; 27(20):28944-28951. PubMed ID: 31684637
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Circular nanocavity substrate-assisted plasmonic tip for its enhancement in nanofocusing and optical trapping.
    Lu F; Zhang W; Sun L; Mei T; Yuan X
    Opt Express; 2021 Nov; 29(23):37515-37524. PubMed ID: 34808821
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fast and efficient nanoparticle trapping using plasmonic connected nanoring apertures.
    Bouloumis TD; Kotsifaki DG; Han X; Chormaic SN; Truong VG
    Nanotechnology; 2021 Jan; 32(2):025507. PubMed ID: 32992307
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Optically Controlled Microscale Elevator Using Plasmonic Janus Particles.
    Nedev S; Carretero-Palacios S; Kühler P; Lohmüller T; Urban AS; Anderson LJ; Feldmann J
    ACS Photonics; 2015 Apr; 2(4):491-496. PubMed ID: 25950013
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Integrating Sub-3 nm Plasmonic Gaps into Solid-State Nanopores.
    Shi X; Verschueren D; Pud S; Dekker C
    Small; 2018 May; 14(18):e1703307. PubMed ID: 29251411
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanotechnological selection.
    Demming A
    Nanotechnology; 2013 Jan; 24(2):020201. PubMed ID: 23242125
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic Coupling Dynamics of Silver Nanoparticles in an Optical Trap.
    Blattmann M; Rohrbach A
    Nano Lett; 2015 Dec; 15(12):7816-21. PubMed ID: 26605492
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical force enhancement and annular trapping by plasmonic toroidal resonance in a double-disk metastructure.
    Jin RC; Li J; Wang YH; Zhu MJ; Li JQ; Dong ZG
    Opt Express; 2016 Nov; 24(24):27563-27568. PubMed ID: 27906327
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Label-Free Optical Detection of DNA Translocations through Plasmonic Nanopores.
    Verschueren DV; Pud S; Shi X; De Angelis L; Kuipers L; Dekker C
    ACS Nano; 2019 Jan; 13(1):61-70. PubMed ID: 30512931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable optical forces enhanced by plasmonic modes hybridization in optical trapping of gold nanorods with plasmonic nanocavity.
    Huang WH; Li SF; Xu HT; Xiang ZX; Long YB; Deng HD
    Opt Express; 2018 Mar; 26(5):6202-6213. PubMed ID: 29529812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular temperature probing using optically trapped single upconversion luminescence.
    Suresh K; Monisha K; Bankapur A; Rao SK; Mutalik S; George SD
    Anal Chim Acta; 2023 Sep; 1273():341530. PubMed ID: 37423663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanoparticle trapping and routing on plasmonic nanorails in a microfluidic channel.
    Yin S; He F; Green N; Fang X
    Opt Express; 2020 Jan; 28(2):1357-1368. PubMed ID: 32121848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Simultaneous Force and Darkfield Measurements Reveal Solvent-Dependent Axial Control of Optically Trapped Gold Nanoparticles.
    Jackson DJ; Dawes BA; Kamenetska M
    J Phys Chem Lett; 2023 Mar; 14(11):2830-2836. PubMed ID: 36912824
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Plasmonic optical trapping of nanoparticles using T-shaped copper nanoantennas.
    Li R; Zhao Y; Li R; Liu H; Ge Y; Xu Z
    Opt Express; 2021 Mar; 29(7):9826-9835. PubMed ID: 33820135
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reversal of the optical force in a plasmonic trap.
    Huang L; Martin OJ
    Opt Lett; 2008 Dec; 33(24):3001-3. PubMed ID: 19079520
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plasmonic elliptical nanoholes for chiroptical analysis and enantioselective optical trapping.
    Lin ZH; Zhang J; Huang JS
    Nanoscale; 2021 May; 13(20):9185-9192. PubMed ID: 33960333
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intrinsic heating in optically trapped Au nanoparticles measured by dark-field spectroscopy.
    Andres-Arroyo A; Wang F; Toe WJ; Reece P
    Biomed Opt Express; 2015 Sep; 6(9):3646-54. PubMed ID: 26417530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown.
    Pud S; Verschueren D; Vukovic N; Plesa C; Jonsson MP; Dekker C
    Nano Lett; 2015 Oct; 15(10):7112-7. PubMed ID: 26333767
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solid-State Nanopore Time-of-Flight Mass Spectrometer.
    Tsutsui M; Yokota K; Arima A; He Y; Kawai T
    ACS Sens; 2019 Nov; 4(11):2974-2979. PubMed ID: 31576750
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling and simulation of nanoparticle separation through a solid-state nanopore.
    Jubery TZ; Prabhu AS; Kim MJ; Dutta P
    Electrophoresis; 2012 Jan; 33(2):325-33. PubMed ID: 22222977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.