These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 39240254)

  • 1. Dominant Scattering Mechanisms in Limiting the Electron Mobility of Scandium Nitride.
    Rudra S; Rao D; Poncé S; Saha B
    Nano Lett; 2024 Sep; 24(37):11529-11536. PubMed ID: 39240254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reversal of Band-Ordering Leads to High Hole Mobility in Strained
    Rudra S; Rao D; Poncé S; Saha B
    Nano Lett; 2023 Sep; 23(17):8211-8217. PubMed ID: 37643148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmon-Phonon Coupling in Electrostatically Gated β-Ga
    Rajapitamahuni AK; Manjeshwar AK; Kumar A; Datta A; Ranga P; Thoutam LR; Krishnamoorthy S; Singisetti U; Jalan B
    ACS Nano; 2022 Jun; 16(6):8812-8819. PubMed ID: 35436095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron Scattering and Doping Mechanisms in Solid-Phase-Crystallized In2O3:H Prepared by Atomic Layer Deposition.
    Macco B; Knoops HC; Kessels WM
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16723-9. PubMed ID: 26168056
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strain engineering of polar optical phonon scattering mechanism - an effective way to optimize the power-factor and lattice thermal conductivity of ScN.
    Panneerselvam IR; Kim MH; Baldo C; Wang Y; Sahasranaman M
    Phys Chem Chem Phys; 2021 Oct; 23(40):23288-23302. PubMed ID: 34632991
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An innovative technique for electronic transport model of group-III nitrides.
    Srivastava A; Saxena A; Saxena PK; Gupta FK; Shakya P; Srivastava P; Dixit M; Gambhir S; Shukla RK; Srivastava A
    Sci Rep; 2020 Oct; 10(1):18706. PubMed ID: 33127982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of flexural phonons in carrier mobility of two-dimensional semiconductors: free standing vs on substrate.
    Zhang C; Cheng L; Liu Y
    J Phys Condens Matter; 2021 May; 33(23):. PubMed ID: 33621967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Point Defect Limited Carrier Mobility in 2D Transition Metal Dichalcogenides.
    Xiao Z; Guo R; Zhang C; Liu Y
    ACS Nano; 2024 Mar; 18(11):8511-8516. PubMed ID: 38446825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nontrivial role of polar optical phonons in limiting electron mobility of two-dimensional Ga
    Duan X; Wang T; Fu Z; Liu L; Yang JY
    Phys Chem Chem Phys; 2023 Apr; 25(14):10175-10183. PubMed ID: 36976635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phonon-Limited Mobility in h-BN Encapsulated AB-Stacked Bilayer Graphene.
    Tan C; Adinehloo D; Hone J; Perebeinos V
    Phys Rev Lett; 2022 May; 128(20):206602. PubMed ID: 35657858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamental limits on the electron mobility of β-Ga
    Kang Y; Krishnaswamy K; Peelaers H; Van de Walle CG
    J Phys Condens Matter; 2017 Jun; 29(23):234001. PubMed ID: 28443602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Giant Modulation of the Electron Mobility in Semiconductor Bi
    Zhu Z; Yao X; Zhao S; Lin X; Li W
    J Am Chem Soc; 2022 Mar; 144(10):4541-4549. PubMed ID: 35235335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phonon-Limited Mobility and Electron-Phonon Coupling in Lead-Free Halide Double Perovskites.
    Leveillee J; Volonakis G; Giustino F
    J Phys Chem Lett; 2021 May; 12(18):4474-4482. PubMed ID: 33956454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low electron-polar optical phonon scattering as a fundamental aspect of carrier mobility in methylammonium lead halide CH3NH3PbI3 perovskites.
    Filippetti A; Mattoni A; Caddeo C; Saba MI; Delugas P
    Phys Chem Chem Phys; 2016 Jun; 18(22):15352-62. PubMed ID: 27211818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and Electron Mobility of ScN Films Grown on α-Al₂O₃(1 1 ¯ 02) Substrates.
    Ohgaki T; Sakaguchi I; Ohashi N
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30513954
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Limits to Electrical Mobility in Lead-Halide Perovskite Semiconductors.
    Xia CQ; Peng J; Poncé S; Patel JB; Wright AD; Crothers TW; Uller Rothmann M; Borchert J; Milot RL; Kraus H; Lin Q; Giustino F; Herz LM; Johnston MB
    J Phys Chem Lett; 2021 Apr; 12(14):3607-3617. PubMed ID: 33822630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient calculation of carrier scattering rates from first principles.
    Ganose AM; Park J; Faghaninia A; Woods-Robinson R; Persson KA; Jain A
    Nat Commun; 2021 Apr; 12(1):2222. PubMed ID: 33850113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polar Semiconducting Scandium Nitride as an Infrared Plasmon and Phonon-Polaritonic Material.
    Maurya KC; Rao D; Acharya S; Rao P; Pillai AIK; Selvaraja SK; Garbrecht M; Saha B
    Nano Lett; 2022 Jul; 22(13):5182-5190. PubMed ID: 35713183
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum-confined nanowires as vehicles for enhanced electrical transport.
    Mohammad SN
    Nanotechnology; 2012 Jul; 23(28):285707. PubMed ID: 22728637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles study of phase-dependent carrier transport mechanism for MASnI
    Li M; Fei J; Zhang X; Li J; Tong C; Long M
    J Phys Condens Matter; 2024 Jul; 36(42):. PubMed ID: 38976979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.