BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

742 related articles for article (PubMed ID: 3924030)

  • 21. Modeling of liver citric acid cycle and gluconeogenesis based on 13C mass isotopomer distribution analysis of intermediates.
    Fernandez CA; Des Rosiers C
    J Biol Chem; 1995 Apr; 270(17):10037-42. PubMed ID: 7730305
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isotopomer analysis of citric acid cycle and gluconeogenesis in rat liver. Reversibility of isocitrate dehydrogenase and involvement of ATP-citrate lyase in gluconeogenesis.
    Des Rosiers C; Di Donato L; Comte B; Laplante A; Marcoux C; David F; Fernandez CA; Brunengraber H
    J Biol Chem; 1995 Apr; 270(17):10027-36. PubMed ID: 7730304
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon-14 tracer studies in rat-liver perfusion experiments under conditions of gluconeogenesis from lactate and pyruvate.
    Müllhofer G; Schwab A; Müller C; Von Stetten C; Gruber E
    Eur J Biochem; 1977 May; 75(2):319-30. PubMed ID: 885132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modifications of citric acid cycle activity and gluconeogenesis in streptozotocin-induced diabetes and effects of metformin.
    Large V; Beylot M
    Diabetes; 1999 Jun; 48(6):1251-7. PubMed ID: 10342812
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metabolism of hyperpolarized [1-(13)C]pyruvate through alternate pathways in rat liver.
    Jin ES; Moreno KX; Wang JX; Fidelino L; Merritt ME; Sherry AD; Malloy CR
    NMR Biomed; 2016 Apr; 29(4):466-74. PubMed ID: 26836042
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The discovery of carbon dioxide fixation in mammalian tissues.
    Krebs HA
    Mol Cell Biochem; 1974 Nov; 5(1-2):79-97. PubMed ID: 4610360
    [No Abstract]   [Full Text] [Related]  

  • 27. Carboxylation and decarboxylation reactions. Anaplerotic flux and removal of citrate cycle intermediates in skeletal muscle.
    Lee SH; Davis EJ
    J Biol Chem; 1979 Jan; 254(2):420-30. PubMed ID: 762069
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lack of glyconeogenesis in pancreatic islets: expression of gluconeogenic enzyme genes in islets.
    MacDonald MJ; McKenzie DI; Walker TM; Kaysen JH
    Horm Metab Res; 1992 Apr; 24(4):158-60. PubMed ID: 1601389
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of labeling pattern of liver glutamate to calculate rates of citric acid cycle and gluconeogenesis.
    Large V; Brunengraber H; Odeon M; Beylot M
    Am J Physiol; 1997 Jan; 272(1 Pt 1):E51-8. PubMed ID: 9038851
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence that the flux control coefficient of the respiratory chain is high during gluconeogenesis from lactate in hepatocytes from starved rats. Implications for the hormonal control of gluconeogenesis and action of hypoglycaemic agents.
    Pryor HJ; Smyth JE; Quinlan PT; Halestrap AP
    Biochem J; 1987 Oct; 247(2):449-57. PubMed ID: 3426547
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative analysis of intermediary metabolism in hepatocytes incubated in the presence and absence of glucagon with a substrate mixture containing glucose, ribose, fructose, alanine and acetate.
    Rabkin M; Blum JJ
    Biochem J; 1985 Feb; 225(3):761-86. PubMed ID: 3919712
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of lysine on gluconeogenesis from lactate in rat hepatocytes.
    Cornell NW; Lund P; Krebs HA
    Biochem J; 1974 Aug; 142(2):327-37. PubMed ID: 4155292
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The redistribution of carbon label by the reactions involved in glycolysis, gluconeogenesis and the tricarboxylic acid cycle in rat liver.
    Heath DF
    Biochem J; 1968 Nov; 110(2):313-35. PubMed ID: 5726211
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PEPCK-M expression in mouse liver potentiates, not replaces, PEPCK-C mediated gluconeogenesis.
    Méndez-Lucas A; Duarte JA; Sunny NE; Satapati S; He T; Fu X; Bermúdez J; Burgess SC; Perales JC
    J Hepatol; 2013 Jul; 59(1):105-13. PubMed ID: 23466304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The mechanisms by which mild respiratory chain inhibitors inhibit hepatic gluconeogenesis.
    Owen MR; Halestrap AP
    Biochim Biophys Acta; 1993 Apr; 1142(1-2):11-22. PubMed ID: 8457580
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart.
    Randle PJ; England PJ; Denton RM
    Biochem J; 1970 May; 117(4):677-95. PubMed ID: 5449122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 14C-labeled propionate metabolism in vivo and estimates of hepatic gluconeogenesis relative to Krebs cycle flux.
    Landau BR; Schumann WC; Chandramouli V; Magnusson I; Kumaran K; Wahren J
    Am J Physiol; 1993 Oct; 265(4 Pt 1):E636-47. PubMed ID: 8238339
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucose production in the newborn dog. II. Evaluation of autonomic and enzymatic control in the isolated perfused canine liver.
    Chilebowski RT; Adam PA
    Pediatr Res; 1975 Nov; 9(11):821-8. PubMed ID: 171617
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of progesterone on some enzymes of fat and carbohydrate metabolism in rat liver.
    Dahm CH; Minagawa J; Jellinek M
    Am J Obstet Gynecol; 1977 Sep; 129(2):130-2. PubMed ID: 197850
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon-13 nuclear magnetic resonance analysis of [1-13C]glucose metabolism in Crithidia fasciculata. Evidence of CO2 fixation by phosphoenolpyruvate carboxykinase.
    de los Santos C; Buldain G; Frydman B; Cannata JJ; Cazzulo JJ
    Eur J Biochem; 1985 Jun; 149(2):421-9. PubMed ID: 3922760
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 38.