These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 39240340)
1. The impact of harvesting on the evolutionary dynamics of prey species in a prey-predator systems. Bandyopadhyay R; Chattopadhyay J J Math Biol; 2024 Sep; 89(4):38. PubMed ID: 39240340 [TBL] [Abstract][Full Text] [Related]
2. Evolutionary Suicide of Prey: Matsuda and Abrams' Model Revisited. Vitale C; Kisdi E Bull Math Biol; 2019 Nov; 81(11):4778-4802. PubMed ID: 30120688 [TBL] [Abstract][Full Text] [Related]
3. Prey group defense and hunting cooperation among generalist-predators induce complex dynamics: a mathematical study. Roy J; Dey S; Kooi BW; Banerjee M J Math Biol; 2024 Jul; 89(2):22. PubMed ID: 38951257 [TBL] [Abstract][Full Text] [Related]
4. Ecoepidemic predator-prey model with feeding satiation, prey herd behavior and abandoned infected prey. Kooi BW; Venturino E Math Biosci; 2016 Apr; 274():58-72. PubMed ID: 26874217 [TBL] [Abstract][Full Text] [Related]
5. Influence of Allee effect in prey populations on the dynamics of two-prey-one-predator model. Sen M; Banerjee M; Takeuchi Y Math Biosci Eng; 2018 Aug; 15(4):883-904. PubMed ID: 30380314 [TBL] [Abstract][Full Text] [Related]
6. Ecological and evolutionary consequences of predator-prey role reversal: Allee effect and catastrophic predator extinction. Lehtinen SO J Theor Biol; 2021 Feb; 510():110542. PubMed ID: 33242490 [TBL] [Abstract][Full Text] [Related]
7. Complex dynamics of a predator-prey model with opportunistic predator and weak Allee effect in prey. Zhu Z; Chen Y; Chen F; Li Z J Biol Dyn; 2023 Dec; 17(1):2225545. PubMed ID: 37339327 [TBL] [Abstract][Full Text] [Related]
8. Bifurcation analysis of Leslie-Gower predator-prey system with harvesting and fear effect. Yu R; Yu H; Dai C; Ma Z; Wang Q; Zhao M Math Biosci Eng; 2023 Sep; 20(10):18267-18300. PubMed ID: 38052558 [TBL] [Abstract][Full Text] [Related]
9. Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate. Ye J; Wang Y; Jin Z; Dai C; Zhao M Math Biosci Eng; 2022 Jan; 19(4):3402-3426. PubMed ID: 35341257 [TBL] [Abstract][Full Text] [Related]
10. Analysis of long transients and detection of early warning signals of extinction in a class of predator-prey models exhibiting bistable behavior. Sadhu S; Chakraborty Thakur S J Math Biol; 2024 Apr; 88(6):70. PubMed ID: 38668899 [TBL] [Abstract][Full Text] [Related]
11. Supercritical and subcritical Hopf-bifurcations in a two-delayed prey-predator system with density-dependent mortality of predator and strong Allee effect in prey. Banerjee J; Sasmal SK; Layek RK Biosystems; 2019 Jun; 180():19-37. PubMed ID: 30851345 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of a predator-prey model with generalized Holling type functional response and mutual interference. Antwi-Fordjour K; Parshad RD; Beauregard MA Math Biosci; 2020 Aug; 326():108407. PubMed ID: 32565230 [TBL] [Abstract][Full Text] [Related]
14. Stability and bifurcation analysis of the Bazykin's predator-prey ecosystem with Holling type Ⅱ functional response. Wang S; Yu H Math Biosci Eng; 2021 Sep; 18(6):7877-7918. PubMed ID: 34814280 [TBL] [Abstract][Full Text] [Related]
15. Imperfect and Bogdanov-Takens bifurcations in biological models: from harvesting of species to isolation of infectives. Ruan S; Xiao D J Math Biol; 2023 Jun; 87(1):17. PubMed ID: 37358658 [TBL] [Abstract][Full Text] [Related]
16. Sensitivity of the dynamics of the general Rosenzweig-MacArthur model to the mathematical form of the functional response: a bifurcation theory approach. Seo G; Wolkowicz GSK J Math Biol; 2018 Jun; 76(7):1873-1906. PubMed ID: 29307085 [TBL] [Abstract][Full Text] [Related]
17. Trade-off and chaotic dynamics of prey-predator system with two discrete delays. Bhargava M; Sajan ; Dubey B Chaos; 2023 May; 33(5):. PubMed ID: 37229637 [TBL] [Abstract][Full Text] [Related]
18. Consequences of symbiosis for food web dynamics. Kooi BW; Kuijper LD; Kooijman SA J Math Biol; 2004 Sep; 49(3):227-71. PubMed ID: 15293013 [TBL] [Abstract][Full Text] [Related]
19. Bifurcation manifolds in predator-prey models computed by Gröbner basis method. Hajnová V; Přibylová L Math Biosci; 2019 Jun; 312():1-7. PubMed ID: 30946845 [TBL] [Abstract][Full Text] [Related]
20. Bifurcations and multistability on the May-Holling-Tanner predation model considering alternative food for the predators. González-Olivares E; Arancibia-Ibarra C; Rojas-Palma A; González-Yañez B Math Biosci Eng; 2019 May; 16(5):4274-4298. PubMed ID: 31499662 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]