These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 39240375)

  • 1. CSV-Filter: a deep learning-based comprehensive structural variant filtering method for both short and long reads.
    Xia Z; Xiang W; Wang Q; Li X; Li Y; Gao J; Tang T; Yang C; Cui Y
    Bioinformatics; 2024 Sep; 40(9):. PubMed ID: 39240375
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automated filtering of genome-wide large deletions through an ensemble deep learning framework.
    Hu Y; Mangal S; Zhang L; Zhou X
    Methods; 2022 Oct; 206():77-86. PubMed ID: 36038049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RAPTR-SV: a hybrid method for the detection of structural variants.
    Bickhart DM; Hutchison JL; Xu L; Schnabel RD; Taylor JF; Reecy JM; Schroeder S; Van Tassell CP; Sonstegard TS; Liu GE
    Bioinformatics; 2015 Jul; 31(13):2084-90. PubMed ID: 25686638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SVDF: enhancing structural variation detect from long-read sequencing via automatic filtering strategies.
    Hu H; Gao R; Gao W; Gao B; Jiang Z; Zhou M; Wang G; Jiang T
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38980375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NPSV-deep: a deep learning method for genotyping structural variants in short read genome sequencing data.
    Linderman MD; Wallace J; van der Heyde A; Wieman E; Brey D; Shi Y; Hansen P; Shamsi Z; Liu J; Gelb BD; Bashir A
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38444093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep learning approach for filtering structural variants in short read sequencing data.
    Liu Y; Huang Y; Wang G; Wang Y
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33378767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MAMnet: detecting and genotyping deletions and insertions based on long reads and a deep learning approach.
    Ding H; Luo J
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35580841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SVJedi: genotyping structural variations with long reads.
    Lecompte L; Peterlongo P; Lavenier D; Lemaitre C
    Bioinformatics; 2020 Nov; 36(17):4568-4575. PubMed ID: 32437523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. rMFilter: acceleration of long read-based structure variation calling by chimeric read filtering.
    Liu B; Jiang T; Yiu SM; Li J; Wang Y
    Bioinformatics; 2017 Sep; 33(17):2750-2752. PubMed ID: 28482046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. BreakNet: detecting deletions using long reads and a deep learning approach.
    Luo J; Ding H; Shen J; Zhai H; Wu Z; Yan C; Luo H
    BMC Bioinformatics; 2021 Dec; 22(1):577. PubMed ID: 34856923
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dysgu: efficient structural variant calling using short or long reads.
    Cleal K; Baird DM
    Nucleic Acids Res; 2022 May; 50(9):e53. PubMed ID: 35100420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HQAlign: aligning nanopore reads for SV detection using current-level modeling.
    Joshi D; Diggavi S; Chaisson MJP; Kannan S
    Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37738608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. VISTA: an integrated framework for structural variant discovery.
    Sarwal V; Lee S; Yang J; Sankararaman S; Chaisson M; Eskin E; Mangul S
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39297879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A survey of algorithms for the detection of genomic structural variants from long-read sequencing data.
    Ahsan MU; Liu Q; Perdomo JE; Fang L; Wang K
    Nat Methods; 2023 Aug; 20(8):1143-1158. PubMed ID: 37386186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrative analysis of structural variations using short-reads and linked-reads yields highly specific and sensitive predictions.
    Sethi R; Becker J; Graaf J; Löwer M; Suchan M; Sahin U; Weber D
    PLoS Comput Biol; 2020 Nov; 16(11):e1008397. PubMed ID: 33226985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SVmine improves structural variation detection by integrative mining of predictions from multiple algorithms.
    Xia Y; Liu Y; Deng M; Xi R
    Bioinformatics; 2017 Nov; 33(21):3348-3354. PubMed ID: 29036467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of structural variants detected by PacBio-CLR and ONT sequencing in pear.
    Liu Y; Zhang M; Wang R; Li B; Jiang Y; Sun M; Chang Y; Wu J
    BMC Genomics; 2022 Dec; 23(1):830. PubMed ID: 36517766
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust Benchmark Structural Variant Calls of An Asian Using State-of-the-art Long-read Sequencing Technologies.
    Du X; Li L; Liang F; Liu S; Zhang W; Sun S; Sun Y; Fan F; Wang L; Liang X; Qiu W; Fan G; Wang O; Yang W; Zhang J; Xiao Y; Wang Y; Wang D; Qu S; Chen F; Huang J
    Genomics Proteomics Bioinformatics; 2022 Feb; 20(1):192-204. PubMed ID: 33662625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. invMap: a sensitive mapping tool for long noisy reads with inversion structural variants.
    Wei ZG; Bu PY; Zhang XD; Liu F; Qian Y; Wu FX
    Bioinformatics; 2023 Dec; 39(12):. PubMed ID: 38058196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A recurrence-based approach for validating structural variation using long-read sequencing technology.
    Zhao X; Weber AM; Mills RE
    Gigascience; 2017 Aug; 6(8):1-9. PubMed ID: 28873962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.