These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 39240407)
1. Unlocking soil revival: the role of sulfate-reducing bacteria in mitigating heavy metal contamination. Hu C; Yang Z; Chen Y; Tang J; Zeng L; Peng C; Chen L; Wang J Environ Geochem Health; 2024 Sep; 46(10):417. PubMed ID: 39240407 [TBL] [Abstract][Full Text] [Related]
2. Sulfate-reducing consortium HQ23 stabilizes metal(loid)s and activates biological N-fixation in mixed heavy metal-contaminated soil. Liu H; Yao J; Shi C; Duran R; Liu J; Jiang S; Li M; Pang W; Ma B; Cao Y; Sunahara G Sci Total Environ; 2024 Oct; 946():174402. PubMed ID: 38960171 [TBL] [Abstract][Full Text] [Related]
3. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil. Sitte J; Akob DM; Kaufmann C; Finster K; Banerjee D; Burkhardt EM; Kostka JE; Scheinost AC; Büchel G; Küsel K Appl Environ Microbiol; 2010 May; 76(10):3143-52. PubMed ID: 20363796 [TBL] [Abstract][Full Text] [Related]
4. Column experiments to assess the effects of electron donors on the efficiency of in situ precipitation of Zn, Cd, Co and Ni in contaminated groundwater applying the biological sulfate removal technology. Geets J; Vanbroekhoven K; Borremans B; Vangronsveld J; Diels L; van der Lelie D Environ Sci Pollut Res Int; 2006 Oct; 13(6):362-78. PubMed ID: 17120826 [TBL] [Abstract][Full Text] [Related]
5. A synthetic bacterial consortium improved the phytoremediation efficiency of ryegrass on polymetallic contaminated soil. Wu ZH; Li F; Wang F; Jin R; Li Y; Li S; Zhou Z; Jia P; Li JT Ecotoxicol Environ Saf; 2024 Sep; 282():116691. PubMed ID: 38981391 [TBL] [Abstract][Full Text] [Related]
6. Non-phytoremediation and phytoremediation technologies of integrated remediation for water and soil heavy metal pollution: A comprehensive review. Liu N; Zhao J; Du J; Hou C; Zhou X; Chen J; Zhang Y Sci Total Environ; 2024 Oct; 948():174237. PubMed ID: 38942300 [TBL] [Abstract][Full Text] [Related]
7. Microbially supported phytoremediation of heavy metal contaminated soils: strategies and applications. Phieler R; Voit A; Kothe E Adv Biochem Eng Biotechnol; 2014; 141():211-35. PubMed ID: 23719709 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of sulfate-reducing bacteria by metal sulfide formation in bioremediation of acid mine drainage. Utgikar VP; Harmon SM; Chaudhary N; Tabak HH; Govind R; Haines JR Environ Toxicol; 2002 Feb; 17(1):40-8. PubMed ID: 11847973 [TBL] [Abstract][Full Text] [Related]
9. The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review. Li X; Lan SM; Zhu ZP; Zhang C; Zeng GM; Liu YG; Cao WC; Song B; Yang H; Wang SF; Wu SH Ecotoxicol Environ Saf; 2018 Aug; 158():162-170. PubMed ID: 29684746 [TBL] [Abstract][Full Text] [Related]
10. Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Ashraf S; Ali Q; Zahir ZA; Ashraf S; Asghar HN Ecotoxicol Environ Saf; 2019 Jun; 174():714-727. PubMed ID: 30878808 [TBL] [Abstract][Full Text] [Related]
11. [Mechanism and Application of Plant Growth-Promoting Bacteria in Heavy Metal Bioremediation]. Ma Y; Wang Y; Shi XJ; Chen XP; Li ZL Huan Jing Ke Xue; 2022 Sep; 43(9):4911-4922. PubMed ID: 36096631 [TBL] [Abstract][Full Text] [Related]
12. [Rice straw and sewage sludge as carbon sources for sulfate-reducing bacteria treating acid mine drainage]. Su Y; Wang J; Peng SC; Yue ZB; Chen TH; Jin J Huan Jing Ke Xue; 2010 Aug; 31(8):1858-63. PubMed ID: 21090305 [TBL] [Abstract][Full Text] [Related]
13. Mechanism and application of bacterial exopolysaccharides: An advanced approach for sustainable heavy metal abolition from soil. Ghosh A; Sah D; Chakraborty M; Rai JPN Carbohydr Res; 2024 Oct; 544():109247. PubMed ID: 39180879 [TBL] [Abstract][Full Text] [Related]
14. Nano-biogenic heavy metals adsorptive remediation for enhanced soil health and sustainable agricultural production. Jha A; Barsola B; Pathania D; Sonu ; Raizada P; Thakur P; Singh P; Rustagi S; Khosla A; Chaudhary V Environ Res; 2024 Jul; 252(Pt 3):118926. PubMed ID: 38657848 [TBL] [Abstract][Full Text] [Related]
15. Genomic characterization of a novel ureolytic bacteria, Lysinibacillus capsici TSBLM, and its application to the remediation of acidic heavy metal-contaminated soil. Hu X; He B; Liu Y; Ma S; Yu C Sci Total Environ; 2024 Jun; 927():172170. PubMed ID: 38575034 [TBL] [Abstract][Full Text] [Related]
16. Bioremediation of heavy metal-contaminated soils by sulfate-reducing bacteria. Jiang W; Fan W Ann N Y Acad Sci; 2008 Oct; 1140():446-54. PubMed ID: 18991946 [TBL] [Abstract][Full Text] [Related]
17. Phytoremediation of Heavy Metal-Contaminated Soil by Switchgrass: A Comparative Study Utilizing Different Composts and Coir Fiber on Pollution Remediation, Plant Productivity, and Nutrient Leaching. Shrestha P; Bellitürk K; Görres JH Int J Environ Res Public Health; 2019 Apr; 16(7):. PubMed ID: 30970575 [TBL] [Abstract][Full Text] [Related]
18. Remediation of heavy metals polluted soil environment: A critical review on biological approaches. Zheng X; Lin H; Du D; Li G; Alam O; Cheng Z; Liu X; Jiang S; Li J Ecotoxicol Environ Saf; 2024 Oct; 284():116883. PubMed ID: 39173222 [TBL] [Abstract][Full Text] [Related]
19. Microbially-induced Carbonate Precipitation for Immobilization of Toxic Metals. Kumari D; Qian XY; Pan X; Achal V; Li Q; Gadd GM Adv Appl Microbiol; 2016; 94():79-108. PubMed ID: 26917242 [TBL] [Abstract][Full Text] [Related]
20. Biochar-bacteria-plant partnerships: Eco-solutions for tackling heavy metal pollution. Harindintwali JD; Zhou J; Yang W; Gu Q; Yu X Ecotoxicol Environ Saf; 2020 Nov; 204():111020. PubMed ID: 32810706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]