These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 39240529)
1. Development and Validation of a Proximity Labeling Fusion Protein Construct to Identify the Protein-Protein Interactions of Transcription Factors. Leskinen HL; Udvadia AJ Methods Mol Biol; 2025; 2848():269-297. PubMed ID: 39240529 [TBL] [Abstract][Full Text] [Related]
3. RNA-protein interaction mapping via MS2- or Cas13-based APEX targeting. Han S; Zhao BS; Myers SA; Carr SA; He C; Ting AY Proc Natl Acad Sci U S A; 2020 Sep; 117(36):22068-22079. PubMed ID: 32839320 [TBL] [Abstract][Full Text] [Related]
4. The cysteine-free single mutant C32S of APEX2 is a highly expressed and active fusion tag for proximity labeling applications. Huang MS; Lin WC; Chang JH; Cheng CH; Wang HY; Mou KY Protein Sci; 2019 Sep; 28(9):1703-1712. PubMed ID: 31306516 [TBL] [Abstract][Full Text] [Related]
5. APEX2-mediated RAB proximity labeling identifies a role for RAB21 in clathrin-independent cargo sorting. Del Olmo T; Lauzier A; Normandin C; Larcher R; Lecours M; Jean D; Lessard L; Steinberg F; Boisvert FM; Jean S EMBO Rep; 2019 Feb; 20(2):. PubMed ID: 30610016 [TBL] [Abstract][Full Text] [Related]
6. Autophagosome content profiling using proximity biotinylation proteomics coupled to protease digestion in mammalian cells. Zellner S; Nalbach K; Behrends C STAR Protoc; 2021 Jun; 2(2):100506. PubMed ID: 33997820 [TBL] [Abstract][Full Text] [Related]
7. APEX2-based proximity proteomic analysis identifies candidate interactors for Plasmodium falciparum knob-associated histidine-rich protein in infected erythrocytes. Charneau S; de Oliveira LS; Zenonos Z; Hopp CS; Bastos IMD; Loew D; Lombard B; Pandolfo Silveira A; de Carvalho Nardeli Basílio Lobo G; Bao SN; Grellier P; Rayner JC Sci Rep; 2024 May; 14(1):11242. PubMed ID: 38755230 [TBL] [Abstract][Full Text] [Related]
8. Expanding APEX2 Substrates for Proximity-Dependent Labeling of Nucleic Acids and Proteins in Living Cells. Zhou Y; Wang G; Wang P; Li Z; Yue T; Wang J; Zou P Angew Chem Int Ed Engl; 2019 Aug; 58(34):11763-11767. PubMed ID: 31240809 [TBL] [Abstract][Full Text] [Related]
9. Proteomic mapping by rapamycin-dependent targeting of APEX2 identifies binding partners of VAPB at the inner nuclear membrane. James C; Müller M; Goldberg MW; Lenz C; Urlaub H; Kehlenbach RH J Biol Chem; 2019 Nov; 294(44):16241-16254. PubMed ID: 31519755 [TBL] [Abstract][Full Text] [Related]
10. APEX2 Proximity Proteomics Resolves Flagellum Subdomains and Identifies Flagellum Tip-Specific Proteins in Trypanosoma brucei. Vélez-Ramírez DE; Shimogawa MM; Ray SS; Lopez A; Rayatpisheh S; Langousis G; Gallagher-Jones M; Dean S; Wohlschlegel JA; Hill KL mSphere; 2021 Feb; 6(1):. PubMed ID: 33568455 [No Abstract] [Full Text] [Related]
11. Proximity Tagging Identifies the Glycan-Mediated Glycoprotein Interactors of Galectin-1 in Muscle Stem Cells. Vilen Z; Joeh E; Critcher M; Parker CG; Huang ML ACS Chem Biol; 2021 Oct; 16(10):1994-2003. PubMed ID: 34181849 [TBL] [Abstract][Full Text] [Related]
12. Identification of Interactions in the NMD Complex Using Proximity-Dependent Biotinylation (BioID). Schweingruber C; Soffientini P; Ruepp MD; Bachi A; Mühlemann O PLoS One; 2016; 11(3):e0150239. PubMed ID: 26934103 [TBL] [Abstract][Full Text] [Related]
13. An APEX2 proximity ligation method for mapping interactions with the nuclear lamina. Tran JR; Paulson DI; Moresco JJ; Adam SA; Yates JR; Goldman RD; Zheng Y J Cell Biol; 2021 Jan; 220(1):. PubMed ID: 33306092 [TBL] [Abstract][Full Text] [Related]
14. Proximity Labeling by a Recombinant APEX2-FGF1 Fusion Protein Reveals Interaction of FGF1 with the Proteoglycans CD44 and CSPG4. Zhen Y; Haugsten EM; Singh SK; Wesche J Biochemistry; 2018 Jul; 57(26):3807-3816. PubMed ID: 29812912 [TBL] [Abstract][Full Text] [Related]
15. Optimized APEX2 peroxidase-mediated proximity labeling in fast- and slow-growing mycobacteria. Ahamed M; Jaisinghani N; Li M; Winkeler I; Silva S; Previti ML; Seeliger JC Methods Enzymol; 2022; 664():267-289. PubMed ID: 35331378 [TBL] [Abstract][Full Text] [Related]
16. Proximity proteomics of endothelial Weibel-Palade bodies identifies novel regulator of von Willebrand factor secretion. Holthenrich A; Drexler HCA; Chehab T; Naß J; Gerke V Blood; 2019 Sep; 134(12):979-982. PubMed ID: 31262780 [TBL] [Abstract][Full Text] [Related]
17. Biotin Proximity Labeling for Protein-Protein Interaction Discovery: The BioID Method. Habel JE Methods Mol Biol; 2021; 2261():357-379. PubMed ID: 33421001 [TBL] [Abstract][Full Text] [Related]
18. Repurposing Proximity-Dependent Protein Labeling (BioID2) for Protein Interaction Mapping in E. coli. Killelea T; Kemm FE; He L; Rudolph CJ; Bolt EL Methods Mol Biol; 2024; 2828():87-106. PubMed ID: 39147973 [TBL] [Abstract][Full Text] [Related]
19. Proximity-Dependent Biotinylation for Identification of Interacting Proteins. Le Sage V; Cinti A; Mouland AJ Curr Protoc Cell Biol; 2016 Dec; 73():17.19.1-17.19.12. PubMed ID: 27906451 [TBL] [Abstract][Full Text] [Related]
20. Spatially resolved proteomic mapping in living cells with the engineered peroxidase APEX2. Hung V; Udeshi ND; Lam SS; Loh KH; Cox KJ; Pedram K; Carr SA; Ting AY Nat Protoc; 2016 Mar; 11(3):456-75. PubMed ID: 26866790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]