These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 39240651)

  • 1. Guide assignment in single-cell CRISPR screens using crispat.
    Braunger JM; Velten B
    Bioinformatics; 2024 Sep; 40(9):. PubMed ID: 39240651
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the design of CRISPR-based single-cell molecular screens.
    Hill AJ; McFaline-Figueroa JL; Starita LM; Gasperini MJ; Matreyek KA; Packer J; Jackson D; Shendure J; Trapnell C
    Nat Methods; 2018 Apr; 15(4):271-274. PubMed ID: 29457792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DrugThatGene: integrative analysis to streamline the identification of druggable genes, pathways and protein complexes from CRISPR screens.
    Canver MC; Bauer DE; Maeda T; Pinello L
    Bioinformatics; 2019 Jun; 35(11):1981-1984. PubMed ID: 30395160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GiRAFR improves gRNA detection and annotation in single-cell CRISPR screens.
    Yu Q; Van Minsel P; Galle E; Thienpont B
    Commun Biol; 2023 Sep; 6(1):975. PubMed ID: 37741886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CASPR, an analysis pipeline for single and paired guide RNA CRISPR screens, reveals optimal target selection for long non-coding RNAs.
    Bergadà-Pijuan J; Pulido-Quetglas C; Vancura A; Johnson R
    Bioinformatics; 2020 Mar; 36(6):1673-1680. PubMed ID: 31681950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SeqCor: correct the effect of guide RNA sequences in clustered regularly interspaced short palindromic repeats/Cas9 screening by machine learning algorithm.
    Liu X; Yang Y; Qiu Y; Reyad-Ul-Ferdous M; Ding Q; Wang Y
    J Genet Genomics; 2020 Nov; 47(11):672-680. PubMed ID: 33451939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MAUDE: inferring expression changes in sorting-based CRISPR screens.
    de Boer CG; Ray JP; Hacohen N; Regev A
    Genome Biol; 2020 Jun; 21(1):134. PubMed ID: 32493396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pooled CRISPR Screens in Drosophila Cells.
    Viswanatha R; Brathwaite R; Hu Y; Li Z; Rodiger J; Merckaert P; Chung V; Mohr SE; Perrimon N
    Curr Protoc Mol Biol; 2019 Dec; 129(1):e111. PubMed ID: 31763777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR Screens Provide a Comprehensive Assessment of Cancer Vulnerabilities but Generate False-Positive Hits for Highly Amplified Genomic Regions.
    Munoz DM; Cassiani PJ; Li L; Billy E; Korn JM; Jones MD; Golji J; Ruddy DA; Yu K; McAllister G; DeWeck A; Abramowski D; Wan J; Shirley MD; Neshat SY; Rakiec D; de Beaumont R; Weber O; Kauffmann A; McDonald ER; Keen N; Hofmann F; Sellers WR; Schmelzle T; Stegmeier F; Schlabach MR
    Cancer Discov; 2016 Aug; 6(8):900-13. PubMed ID: 27260157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissecting key regulators of transcriptome kinetics through scalable single-cell RNA profiling of pooled CRISPR screens.
    Xu Z; Sziraki A; Lee J; Zhou W; Cao J
    Nat Biotechnol; 2024 Aug; 42(8):1218-1223. PubMed ID: 37749268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MultiGuideScan: a multi-processing tool for designing CRISPR guide RNA libraries.
    Li T; Wang S; Luo F; Wu FX; Wang J
    Bioinformatics; 2020 Feb; 36(3):920-921. PubMed ID: 31386102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PAVOOC: designing CRISPR sgRNAs using 3D protein structures and functional domain annotations.
    Schaefer M; Clevert DA; Weiss B; Steffen A
    Bioinformatics; 2019 Jul; 35(13):2309-2310. PubMed ID: 30445568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational identification of clonal cells in single-cell CRISPR screens.
    Wang Y; Xie S; Armendariz D; Hon GC
    BMC Genomics; 2022 Feb; 23(1):135. PubMed ID: 35168568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crisflash: open-source software to generate CRISPR guide RNAs against genomes annotated with individual variation.
    Jacquin ALS; Odom DT; Lukk M
    Bioinformatics; 2019 Sep; 35(17):3146-3147. PubMed ID: 30649181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of combinatorial CRISPR screens with the Orthrus scoring pipeline.
    Ward HN; Aregger M; Gonatopoulos-Pournatzis T; Billmann M; Ohsumi TK; Brown KR; Blencowe BJ; Moffat J; Myers CL
    Nat Protoc; 2021 Oct; 16(10):4766-4798. PubMed ID: 34508259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. gscreend: modelling asymmetric count ratios in CRISPR screens to decrease experiment size and improve phenotype detection.
    Imkeller K; Ambrosi G; Boutros M; Huber W
    Genome Biol; 2020 Mar; 21(1):53. PubMed ID: 32122365
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-scale CRISPR pooled screens.
    Sanjana NE
    Anal Biochem; 2017 Sep; 532():95-99. PubMed ID: 27261176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GenomeCRISPR - a database for high-throughput CRISPR/Cas9 screens.
    Rauscher B; Heigwer F; Breinig M; Winter J; Boutros M
    Nucleic Acids Res; 2017 Jan; 45(D1):D679-D686. PubMed ID: 27789686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPRitz: rapid, high-throughput and variant-aware in silico off-target site identification for CRISPR genome editing.
    Cancellieri S; Canver MC; Bombieri N; Giugno R; Pinello L
    Bioinformatics; 2020 Apr; 36(7):2001-2008. PubMed ID: 31764961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adapting CRISPR/Cas9 for functional genomics screens.
    Malina A; Katigbak A; Cencic R; Maïga RI; Robert F; Miura H; Pelletier J
    Methods Enzymol; 2014; 546():193-213. PubMed ID: 25398342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.