These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Estimation of musculotendon kinematics in large musculoskeletal models using multidimensional B-splines. Sartori M; Reggiani M; van den Bogert AJ; Lloyd DG J Biomech; 2012 Feb; 45(3):595-601. PubMed ID: 22176708 [TBL] [Abstract][Full Text] [Related]
3. A validated combined musculotendon path and muscle-joint kinematics model for the human hand. Ma'touq J; Hu T; Haddadin S Comput Methods Biomech Biomed Engin; 2019 May; 22(7):727-739. PubMed ID: 30880463 [TBL] [Abstract][Full Text] [Related]
4. The effects of electromyography-assisted modelling in estimating musculotendon forces during gait in children with cerebral palsy. Veerkamp K; Schallig W; Harlaar J; Pizzolato C; Carty CP; Lloyd DG; van der Krogt MM J Biomech; 2019 Jul; 92():45-53. PubMed ID: 31153626 [TBL] [Abstract][Full Text] [Related]
5. Musculotendon lengths and moment arms for a three-dimensional upper-extremity model. Rankin JW; Neptune RR J Biomech; 2012 Jun; 45(9):1739-44. PubMed ID: 22520587 [TBL] [Abstract][Full Text] [Related]
6. A fair and EMG-validated comparison of recruitment criteria, musculotendon models and muscle coordination strategies, for the inverse-dynamics based optimization of muscle forces during gait. Michaud F; Lamas M; Lugrís U; Cuadrado J J Neuroeng Rehabil; 2021 Jan; 18(1):17. PubMed ID: 33509205 [TBL] [Abstract][Full Text] [Related]
7. Multi-level personalization of neuromusculoskeletal models to estimate physiologically plausible knee joint contact forces in children. Davico G; Lloyd DG; Carty CP; Killen BA; Devaprakash D; Pizzolato C Biomech Model Mechanobiol; 2022 Dec; 21(6):1873-1886. PubMed ID: 36229699 [TBL] [Abstract][Full Text] [Related]
8. Hip contact forces can be predicted with a neural network using only synthesised key points and electromyography in people with hip osteoarthritis. Cornish BM; Pizzolato C; Saxby DJ; Xia Z; Devaprakash D; Diamond LE Osteoarthritis Cartilage; 2024 Jun; 32(6):730-739. PubMed ID: 38442767 [TBL] [Abstract][Full Text] [Related]
9. The effect of knee model on estimates of muscle and joint forces in recumbent pedaling. Koehle MJ; Hull ML J Biomech Eng; 2010 Jan; 132(1):011007. PubMed ID: 20524745 [TBL] [Abstract][Full Text] [Related]
10. Muscle moment arms and sensitivity analysis of a mouse hindlimb musculoskeletal model. Charles JP; Cappellari O; Spence AJ; Wells DJ; Hutchinson JR J Anat; 2016 Oct; 229(4):514-35. PubMed ID: 27173448 [TBL] [Abstract][Full Text] [Related]
11. Intersegmental kinetics significantly impact mapping from finger musculotendon forces to fingertip forces. Qiu D; Lee SW; Amine M; Kamper DG J Biomech; 2017 Dec; 65():82-88. PubMed ID: 29102266 [TBL] [Abstract][Full Text] [Related]
13. Biofeedback for Gait Retraining Based on Real-Time Estimation of Tibiofemoral Joint Contact Forces. Pizzolato C; Reggiani M; Saxby DJ; Ceseracciu E; Modenese L; Lloyd DG IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1612-1621. PubMed ID: 28436878 [TBL] [Abstract][Full Text] [Related]
14. In vivo determination of subject-specific musculotendon parameters: applications to the prime elbow flexors in normal and hemiparetic subjects. Koo TK; Mak AF; Hung LK Clin Biomech (Bristol); 2002 Jun; 17(5):390-9. PubMed ID: 12084544 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the dependence of joint contact forces on musculotendon parameters using a codified workflow for image-based modelling. Modenese L; Montefiori E; Wang A; Wesarg S; Viceconti M; Mazzà C J Biomech; 2018 May; 73():108-118. PubMed ID: 29673935 [TBL] [Abstract][Full Text] [Related]
16. CEINMS: A toolbox to investigate the influence of different neural control solutions on the prediction of muscle excitation and joint moments during dynamic motor tasks. Pizzolato C; Lloyd DG; Sartori M; Ceseracciu E; Besier TF; Fregly BJ; Reggiani M J Biomech; 2015 Nov; 48(14):3929-36. PubMed ID: 26522621 [TBL] [Abstract][Full Text] [Related]
17. Musculotendon Parameters in Lower Limb Models: Simplifications, Uncertainties, and Muscle Force Estimation Sensitivity. Chen Z; Franklin DW Ann Biomed Eng; 2023 Jun; 51(6):1147-1164. PubMed ID: 36913088 [TBL] [Abstract][Full Text] [Related]
18. Subject-specific calibration of neuromuscular parameters enables neuromusculoskeletal models to estimate physiologically plausible hip joint contact forces in healthy adults. Hoang HX; Pizzolato C; Diamond LE; Lloyd DG J Biomech; 2018 Oct; 80():111-120. PubMed ID: 30213647 [TBL] [Abstract][Full Text] [Related]
19. A Reconfigurable Multiplanar In Vitro Simulator for Real-Time Absolute Motion With External and Musculotendon Forces. Green JT; Hale RF; Hausselle J; Gonzalez RV J Biomech Eng; 2017 Dec; 139(12):. PubMed ID: 28877307 [TBL] [Abstract][Full Text] [Related]
20. Sensitivity of predicted muscle forces during gait to anatomical variability in musculotendon geometry. Bosmans L; Valente G; Wesseling M; Van Campen A; De Groote F; De Schutter J; Jonkers I J Biomech; 2015 Jul; 48(10):2116-23. PubMed ID: 25979383 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]