These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 39241968)

  • 1. A novel method for sparse dynamic functional connectivity analysis from resting-state fMRI.
    Wang H; Chen J; Yuan Z; Huang Y; Lin F
    J Neurosci Methods; 2024 Nov; 411():110275. PubMed ID: 39241968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimensionality reduction impedes the extraction of dynamic functional connectivity states from fMRI recordings of resting wakefulness.
    Kafashan M; Palanca BJA; Ching S
    J Neurosci Methods; 2018 Jan; 293():151-161. PubMed ID: 28947263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning effective connectivity from fMRI using autoregressive hidden Markov model with missing data.
    Dang S; Chaudhury S; Lall B; Roy PK
    J Neurosci Methods; 2017 Feb; 278():87-100. PubMed ID: 28065836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating Dynamic Functional Brain Connectivity With a Sparse Hidden Markov Model.
    Zhang G; Cai B; Zhang A; Stephen JM; Wilson TW; Calhoun VD; Wang YP
    IEEE Trans Med Imaging; 2020 Feb; 39(2):488-498. PubMed ID: 31329112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of epileptic brain states by dynamic functional connectivity analysis of simultaneous EEG-fMRI: a dictionary learning approach.
    Abreu R; Leal A; Figueiredo P
    Sci Rep; 2019 Jan; 9(1):638. PubMed ID: 30679773
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpreting temporal fluctuations in resting-state functional connectivity MRI.
    Liégeois R; Laumann TO; Snyder AZ; Zhou J; Yeo BTT
    Neuroimage; 2017 Dec; 163():437-455. PubMed ID: 28916180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian switching factor analysis for estimating time-varying functional connectivity in fMRI.
    Taghia J; Ryali S; Chen T; Supekar K; Cai W; Menon V
    Neuroimage; 2017 Jul; 155():271-290. PubMed ID: 28267626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.
    DSouza AM; Abidin AZ; Leistritz L; Wismüller A
    J Neurosci Methods; 2017 Aug; 287():68-79. PubMed ID: 28629720
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State-space model with deep learning for functional dynamics estimation in resting-state fMRI.
    Suk HI; Wee CY; Lee SW; Shen D
    Neuroimage; 2016 Apr; 129():292-307. PubMed ID: 26774612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved state change estimation in dynamic functional connectivity using hidden semi-Markov models.
    Shappell H; Caffo BS; Pekar JJ; Lindquist MA
    Neuroimage; 2019 May; 191():243-257. PubMed ID: 30753927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing dynamic amplitude of low-frequency fluctuation and its relationship with dynamic functional connectivity: An application to schizophrenia.
    Fu Z; Tu Y; Di X; Du Y; Pearlson GD; Turner JA; Biswal BB; Zhang Z; Calhoun VD
    Neuroimage; 2018 Oct; 180(Pt B):619-631. PubMed ID: 28939432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved dynamic functional connectivity estimation with an alternating hidden Markov model.
    Long Z; Liu X; Niu Y; Shang H; Lu H; Zhang J; Yao L
    Cogn Neurodyn; 2023 Oct; 17(5):1381-1398. PubMed ID: 37786659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?
    Hindriks R; Adhikari MH; Murayama Y; Ganzetti M; Mantini D; Logothetis NK; Deco G
    Neuroimage; 2016 Feb; 127():242-256. PubMed ID: 26631813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disentangling dynamic networks: Separated and joint expressions of functional connectivity patterns in time.
    Leonardi N; Shirer WR; Greicius MD; Van De Ville D
    Hum Brain Mapp; 2014 Dec; 35(12):5984-95. PubMed ID: 25081921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Group-representative functional network estimation from multi-subject fMRI data via MRF-based image segmentation.
    Tang B; Iyer A; Rao V; Kong N
    Comput Methods Programs Biomed; 2019 Oct; 179():104976. PubMed ID: 31443856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic effective connectivity.
    Zarghami TS; Friston KJ
    Neuroimage; 2020 Feb; 207():116453. PubMed ID: 31821868
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Test-retest reliability of dynamic functional connectivity in naturalistic paradigm functional magnetic resonance imaging.
    Zhang X; Liu J; Yang Y; Zhao S; Guo L; Han J; Hu X
    Hum Brain Mapp; 2022 Mar; 43(4):1463-1476. PubMed ID: 34870361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sparse SPM: Group Sparse-dictionary learning in SPM framework for resting-state functional connectivity MRI analysis.
    Lee YB; Lee J; Tak S; Lee K; Na DL; Seo SW; Jeong Y; Ye JC;
    Neuroimage; 2016 Jan; 125():1032-1045. PubMed ID: 26524138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamic programming high-order Dynamic Bayesian Networks learning for identifying effective connectivity in human brain from fMRI.
    Dang S; Chaudhury S; Lall B; Roy PK
    J Neurosci Methods; 2017 Jun; 285():33-44. PubMed ID: 28495368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resting state dynamics meets anatomical structure: Temporal multiple kernel learning (tMKL) model.
    Surampudi SG; Misra J; Deco G; Bapi RS; Sharma A; Roy D
    Neuroimage; 2019 Jan; 184():609-620. PubMed ID: 30267857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.