These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Convolutional Neural Network With Sparse Strategies to Classify Dynamic Functional Connectivity. Ji J; Chen Z; Yang C IEEE J Biomed Health Inform; 2022 Mar; 26(3):1219-1228. PubMed ID: 34314368 [TBL] [Abstract][Full Text] [Related]
23. Test-retest reliability of dynamic functional connectivity in resting state fMRI. Zhang C; Baum SA; Adduru VR; Biswal BB; Michael AM Neuroimage; 2018 Dec; 183():907-918. PubMed ID: 30120987 [TBL] [Abstract][Full Text] [Related]
24. Development and validation of consensus clustering-based framework for brain segmentation using resting fMRI. Ryali S; Chen T; Padmanabhan A; Cai W; Menon V J Neurosci Methods; 2015 Jan; 240():128-40. PubMed ID: 25450335 [TBL] [Abstract][Full Text] [Related]
25. Robust brain parcellation using sparse representation on resting-state fMRI. Zhang Y; Caspers S; Fan L; Fan Y; Song M; Liu C; Mo Y; Roski C; Eickhoff S; Amunts K; Jiang T Brain Struct Funct; 2015 Nov; 220(6):3565-79. PubMed ID: 25156576 [TBL] [Abstract][Full Text] [Related]
26. A predictor-informed multi-subject bayesian approach for dynamic functional connectivity. Lee J; Hussain S; Warnick R; Vannucci M; Menchaca I; Seitz AR; Hu X; Peters MAK; Guindani M PLoS One; 2024; 19(5):e0298651. PubMed ID: 38753655 [TBL] [Abstract][Full Text] [Related]
28. Probabilistic framework for brain connectivity from functional MR images. Rajapakse JC; Wang Y; Zheng X; Zhou J IEEE Trans Med Imaging; 2008 Jun; 27(6):825-33. PubMed ID: 18541489 [TBL] [Abstract][Full Text] [Related]
29. Nuisance effects and the limitations of nuisance regression in dynamic functional connectivity fMRI. Nalci A; Rao BD; Liu TT Neuroimage; 2019 Jan; 184():1005-1031. PubMed ID: 30223062 [TBL] [Abstract][Full Text] [Related]
30. Real-Time Resting-State Functional Magnetic Resonance Imaging Using Averaged Sliding Windows with Partial Correlations and Regression of Confounding Signals. Vakamudi K; Trapp C; Talaat K; Gao K; Sa De La Rocque Guimaraes B; Posse S Brain Connect; 2020 Oct; 10(8):448-463. PubMed ID: 32892629 [No Abstract] [Full Text] [Related]
37. Aberrant Dynamic Functional Connectivity of Default Mode Network in Schizophrenia and Links to Symptom Severity. Sendi MSE; Zendehrouh E; Ellis CA; Liang Z; Fu Z; Mathalon DH; Ford JM; Preda A; van Erp TGM; Miller RL; Pearlson GD; Turner JA; Calhoun VD Front Neural Circuits; 2021; 15():649417. PubMed ID: 33815070 [No Abstract] [Full Text] [Related]
38. Estimation of Dynamic Sparse Connectivity Patterns From Resting State fMRI. Cai B; Zille P; Stephen JM; Wilson TW; Calhoun VD; Wang YP IEEE Trans Med Imaging; 2018 May; 37(5):1224-1234. PubMed ID: 29727285 [TBL] [Abstract][Full Text] [Related]
39. Dynamic Functional Connectivity States Between the Dorsal and Ventral Sensorimotor Networks Revealed by Dynamic Conditional Correlation Analysis of Resting-State Functional Magnetic Resonance Imaging. Syed MF; Lindquist MA; Pillai JJ; Agarwal S; Gujar SK; Choe AS; Caffo B; Sair HI Brain Connect; 2017 Dec; 7(10):635-642. PubMed ID: 28969437 [TBL] [Abstract][Full Text] [Related]
40. Dynamic effective connectivity in resting state fMRI. Park HJ; Friston KJ; Pae C; Park B; Razi A Neuroimage; 2018 Oct; 180(Pt B):594-608. PubMed ID: 29158202 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]