These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 39242957)

  • 1. Study of the development patterns of water-conducting fracture zones under karst aquifers and the mechanism of water inrush.
    Zheng L; Wang X; Lan H; Ren W; Tian Y; Xu J; Tian S
    Sci Rep; 2024 Sep; 14(1):20790. PubMed ID: 39242957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-inrush mechanism from the head-on working face roof in a Jurassic coal seam in the Ordos Basin.
    Shi L; Qu X; Qiu M; Han J; Zhang W
    PLoS One; 2024; 19(3):e0298399. PubMed ID: 38470875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastic wave prospecting of water-conducting fractured zones in coal mining.
    Zhao B; He S; Bai K; Lu X; Wang W
    Sci Rep; 2024 Mar; 14(1):7036. PubMed ID: 38528085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of particle erosion on mining-induced water inrush hazard of karst collapse pillar.
    Ma D; Wang J; Li Z
    Environ Sci Pollut Res Int; 2019 Jul; 26(19):19719-19728. PubMed ID: 31090004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water-richness evaluation method and application of clastic rock aquifer in mining seam roof.
    Qiu M; Shao Z; Zhang W; Zheng Y; Yin X; Gai G; Han Z; Zhao J
    Sci Rep; 2024 Mar; 14(1):6465. PubMed ID: 38499707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution mechanism of water-conducting fractures in overburden under the influence of water-rich fault in underground coal mining.
    Zhengzheng C; Xiangqian Y; Zhenhua L; Feng D
    Sci Rep; 2024 Mar; 14(1):5081. PubMed ID: 38429309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Study on the damage characteristics of overburden of mining roof in deeply buried coal seam.
    Long T; Hou E; Xie X; Fan Z; Tan E
    Sci Rep; 2022 Jul; 12(1):11141. PubMed ID: 35778594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overburden failure and water-sand mixture outburst conditions of weakly consolidated overlying strata in Dananhu No.7 coal mine.
    Zhu J; Li W; Teng B; Lu Q; Li D; Li L
    Sci Rep; 2024 Apr; 14(1):8439. PubMed ID: 38600225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation and On-Site Detection of the Failure Characteristics of Overlying Strata under the Mining Disturbance of Coal Seams with Thin Bedrock and Thick Alluvium.
    Zhang Q; Guo J; Lu X; Ding K; Yuan R; Wang D
    Sensors (Basel); 2024 Mar; 24(6):. PubMed ID: 38544011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the mining and aquifer interactions in complex geological conditions and its management.
    Huang W; Sui L; Wang Y; Zhang C; Jiang D; Cai X; Yang Z
    Sci Rep; 2023 Jun; 13(1):9462. PubMed ID: 37301932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development characteristics of the rock fracture field in strata overlying a mined coal seam group.
    Qi Y; Wang W; Ge J; Yang Z; Qi Q
    PLoS One; 2022; 17(10):e0268955. PubMed ID: 36197913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study of roof water inrush forecasting based on EM-FAHP two-factor model.
    Liu W; Zheng Q; Pang L; Dou W; Meng X
    Math Biosci Eng; 2021 Jun; 18(5):4987-5005. PubMed ID: 34517474
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Breaking law of overburden rock and key mining technology for narrow coal pillar working face in isolated island.
    Feng D; Zhenhua L; Songtao L; Xiaolei L; Guodong L; Xuan F; Hao R; Zhengzheng C
    Sci Rep; 2024 Jun; 14(1):13045. PubMed ID: 38844674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mine pressure behavior law of isolated island working face under extremely close goaf in shallow coal seam.
    Lan T; Liu Y; Yuan Y; Liu H; Liu H; Zhang S; Wang S
    Sci Rep; 2023 Nov; 13(1):20576. PubMed ID: 37996474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gray Evaluation of Water Inrush Risk in Deep Mining Floor.
    Qu X; Yu X; Qu X; Qiu M; Gao W
    ACS Omega; 2021 Jun; 6(22):13970-13986. PubMed ID: 34124422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical simulation study on grouting water plugging of flexible isolation layer in coal seam mining.
    Li A; Ji B; Ma Q; Ji Y; Mu Q; Zhang W; Mu P; Li L; Zhao C
    Sci Rep; 2022 Jan; 12(1):875. PubMed ID: 35042919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise application of grouting technology in underground coal mining: water inrush risk of floor elimination.
    Zhai M; Bai H
    Environ Sci Pollut Res Int; 2023 Feb; 30(9):24361-24376. PubMed ID: 36342607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Multifactor Quantitative Assessment Model for Safe Mining after Roof Drainage in the Liangshuijing Coal Mine.
    Gao C; Wang D; Liu K; Deng G; Li J; Jie B
    ACS Omega; 2022 Aug; 7(30):26437-26454. PubMed ID: 35936470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Criterion of Grouting Pressure in Regional Advance Grouting Treatment to Prevent Water Disaster from Karst Aquifers in Coal Seam Floors.
    Zhang W; Wu F; Han C; Li X; Peng Z; Ren Q; Yang F; Zhang D
    ACS Omega; 2022 Aug; 7(33):29274-29286. PubMed ID: 36033679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An approach for water-inrush risk assessment of deep coal seam mining: a case study in Xinlongzhuang coal mine.
    Gu Q; Huang Z; Li S; Zeng W; Wu Y; Zhao K
    Environ Sci Pollut Res Int; 2020 Dec; 27(34):43163-43176. PubMed ID: 32729037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.