These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 39243566)
1. Magnetic nanoparticles-immobilized phospholipase LM and phospholipase 3G: Preparation, characterization, and application on soybean crude oil degumming. Chen L; Gao Y; He M; Liu Y; Teng F; Li Y Int J Biol Macromol; 2024 Nov; 279(Pt 3):135368. PubMed ID: 39243566 [TBL] [Abstract][Full Text] [Related]
2. Stability of soybean oil degumming using immobilized phospholipase A(2). Yu D; Ma Y; Jiang L; Walid E; He S; He Y; Xiaoyu Z; Zhang J; Hu L J Oleo Sci; 2014; 63(1):25-30. PubMed ID: 24371193 [TBL] [Abstract][Full Text] [Related]
3. Optimization using response surface methodology of phospholipase C production from Abdelkader I; Ben Mabrouk S; Hadrich B; Refai M; Fendri A; Sayari A Prep Biochem Biotechnol; 2023 Nov; 53(10):1165-1175. PubMed ID: 36794326 [TBL] [Abstract][Full Text] [Related]
4. Preparation of magnetic dialdehyde starch-immobilized phospholipase A Wang Y; Wang N; Wang P; Yang F; Han C; Yu D Int J Biol Macromol; 2024 Feb; 257(Pt 1):128804. PubMed ID: 38101664 [TBL] [Abstract][Full Text] [Related]
5. Chemically modified magnetic immobilized phospholipase A Weining W; Tang H; Chen Y; Liu J; Yu D; Yang F; Elfalleh W J Food Sci Technol; 2022 Jan; 59(1):317-326. PubMed ID: 35068576 [TBL] [Abstract][Full Text] [Related]
6. Case study of chemical and enzymatic degumming processes in soybean oil production at an industrial plant. Khamies M; Hagar M; Kassem TSE; Moustafa AHE Sci Rep; 2024 Feb; 14(1):4064. PubMed ID: 38374296 [TBL] [Abstract][Full Text] [Related]
7. Characterization of a novel thermostable phospholipase C from T. kodakarensis suitable for oil degumming. Marchisio F; Di Nardo L; Val DS; Cerminati S; Espariz M; Rasia RM; Menzella HG; Castelli ME Appl Microbiol Biotechnol; 2022 Aug; 106(13-16):5081-5091. PubMed ID: 35854045 [TBL] [Abstract][Full Text] [Related]
8. Metal affinity immobilization of cellulase on Fe Abbaszadeh M; Hejazi P Food Chem; 2019 Aug; 290():47-55. PubMed ID: 31000055 [TBL] [Abstract][Full Text] [Related]
9. Impact of water degumming and enzymatic degumming on gum mesostructure formation in crude soybean oil. Nikolaeva T; Rietkerk T; Sein A; Dalgliesh R; Bouwman WG; Velichko E; Tian B; Van As H; van Duynhoven J Food Chem; 2020 May; 311():126017. PubMed ID: 31864184 [TBL] [Abstract][Full Text] [Related]
10. Preparation and Characterization of Cellulose Triacetate as Support for Lecitase Ultra Immobilization. Silva FBD; Morais Júnior WG; Silva CVD; Vieira AT; Batista ACF; Faria AM; Assunção RMN Molecules; 2017 Nov; 22(11):. PubMed ID: 29144385 [TBL] [Abstract][Full Text] [Related]
11. Effective Soybean Oil Degumming by Immobilized Phospholipases A Bacha AB; Alonazi M ACS Omega; 2024 May; 9(19):21322-21332. PubMed ID: 38764629 [TBL] [Abstract][Full Text] [Related]
12. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays. Zhu YT; Ren XY; Liu YM; Wei Y; Qing LS; Liao X Mater Sci Eng C Mater Biol Appl; 2014 May; 38():278-85. PubMed ID: 24656379 [TBL] [Abstract][Full Text] [Related]
13. Immobilization of Lecitase Chen W; Kou M; Li L; Li B; Huang J; Fan S; Xu L; Zhong N J Oleo Sci; 2022; 71(5):721-733. PubMed ID: 35491097 [TBL] [Abstract][Full Text] [Related]
14. Multiple thermostable enzyme hydrolases on magnetic nanoparticles: An immobilized enzyme-mediated approach to saccharification through simultaneous xylanase, cellulase and amylolytic glucanotransferase action. Kumari A; Kaila P; Tiwari P; Singh V; Kaul S; Singhal N; Guptasarma P Int J Biol Macromol; 2018 Dec; 120(Pt B):1650-1658. PubMed ID: 30253177 [TBL] [Abstract][Full Text] [Related]
15. Enzymatic Degumming of Rice Bran Oil Using Different Commercial Phospholipases and Their Cocktails. Rodrigues MS; Dos Passos RM; Pontes PVA; Ferreira MC; Meirelles AJA; Stevens CV; Maximo GJ; Sampaio KA Life (Basel); 2021 Nov; 11(11):. PubMed ID: 34833073 [TBL] [Abstract][Full Text] [Related]
16. β-Agarase immobilized on tannic acid-modified Fe Xiao Q; Liu C; Ni H; Zhu Y; Jiang Z; Xiao A Food Chem; 2019 Jan; 272():586-595. PubMed ID: 30309586 [TBL] [Abstract][Full Text] [Related]
17. Lipase-based on starch material as a development matrix with magnetite cross-linked enzyme aggregates and its application. Mehde AA; Mehdi WA; Severgün O; Çakar S; Özacar M Int J Biol Macromol; 2018 Dec; 120(Pt B):1533-1543. PubMed ID: 30261255 [TBL] [Abstract][Full Text] [Related]
18. A novel method for improving laccase activity by immobilization onto copper ferrite nanoparticles for lignin degradation. Muthuvelu KS; Rajarathinam R; Selvaraj RN; Rajendren VB Int J Biol Macromol; 2020 Jun; 152():1098-1107. PubMed ID: 31751696 [TBL] [Abstract][Full Text] [Related]
19. Magnetic Fe Ulu A; Noma SAA; Koytepe S; Ates B Artif Cells Nanomed Biotechnol; 2018; 46(sup2):1035-1045. PubMed ID: 29873527 [TBL] [Abstract][Full Text] [Related]
20. Improvement of stability and reusability of α-amylase immobilized on naringin functionalized magnetic nanoparticles: A robust nanobiocatalyst. Defaei M; Taheri-Kafrani A; Miroliaei M; Yaghmaei P Int J Biol Macromol; 2018 Jul; 113():354-360. PubMed ID: 29486263 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]